Some theorems about mutually recursive domain equations in the category of preordered COFEs

Aleš Bizjak (abizjak@cs.au.dk)

February 2, 2017

1 Basics

In the following let \mathfrak{P} be the category of preordered COFEs and \mathfrak{C} the category of COFEs. There is the forgetful functor $\mathfrak{U} : \mathfrak{P} \to \mathfrak{C}$ which forgets the preorder.

Definition 1.1.

• A functor $F : \mathbb{P}^{\text{op}} \times \mathbb{P}^{\text{op}} \to \mathbb{P}$ is *locally non-expansive* if for all $X, Y, X', Y' \in \mathbb{P}$, all $n \in \mathbb{N}$, all $f, g : X \to Y$ and $f', g' : X' \to Y'$ we have

$$f \stackrel{n}{=} g \wedge f' \stackrel{n}{=} g' \Longrightarrow F(f, f') \stackrel{n}{=} F(g, g')$$

• A functor $F : \mathbb{P}^{\text{op}} \times \mathbb{P}^{\text{op}} \to \mathbb{P}$ is *locally contractive* if for all $X, Y, X', Y' \in \mathbb{P}$, all $n \in \mathbb{N}$, all $f, g : X \to Y$ and $f', g' : X' \to Y'$ we have

$$f \stackrel{n}{=} g \wedge f' \stackrel{n}{=} g' \Longrightarrow F(f, f') \stackrel{n+1}{=} F(g, g')$$

Lemma 1.2. If *F* is locally non-expansive then $\triangleright \circ F$ and $F \circ \triangleright \times \triangleright$ are both locally contractive where the latter is the functor that on objects acts as $(X, Y) \mapsto F(\triangleright X, \triangleright Y)$.

2 Mutually recursive domain equations

Theorem 2.1. Let $F_1, F_2 : \mathbb{P}^{op} \times \mathbb{P}^{op} \to \mathbb{P}$ be two locally contractive functors such that $F_1(1,1)$ and $F_2(1,1)$ are inhabited. Then there exists a pair of objects $X, Y \in \mathbb{P}$ and a pair of isomorphisms ξ_X and ξ_Y such that

$$\begin{split} \xi_X &: X \xrightarrow{\cong} F_1(X, Y) \\ \xi_Y &: Y \xrightarrow{\cong} F_2(X, Y). \end{split}$$

Proof. Since the category \mathfrak{P} is enriched in the category of complete ultrametric spaces so is $\mathfrak{P} \times \mathfrak{P}$. This latter category also has all limits and colimits inherited pointwise from \mathfrak{P} so the general existence theorem from [BST10] applied to the functor

$$G: \mathfrak{P}^{\mathrm{op}} \times \mathfrak{P}^{\mathrm{op}} \to \mathfrak{P} \times \mathfrak{P}$$
$$G(X, Y) = (F_1(X, Y), F_2(X, Y))$$

gives us the solution as described above.

Suppose now that the functors F_1 and F_2 in Theorem 2.1 are such that $\mathfrak{U} \circ F_1 = \mathfrak{U} \circ F_2$. Then we have

$$\mathfrak{U}(X) \cong \mathfrak{U}(F_1(X,Y)) = \mathfrak{U}(F_2(X,Y)) \cong \mathfrak{U}(Y)$$

so the two solutions *X* and *Y* are isomorphic as COFEs, they only differ (potentially) in the preorder. This leads us to the following corollary.

Corollary 2.2. Let $F_1, F_2 : \mathbb{P}^{op} \times \mathbb{P}^{op} \to \mathbb{P}$ be two locally contractive functors such that $F_1(1, 1)$ and $F_2(1, 1)$ are inhabited. Further suppose that $F_1(X, Y)$ and $F_2(X, Y)$ differ only in the preorder, i.e., suppose $\mathfrak{U} \circ F_1 = \mathfrak{U} \circ F_2$.

Then there exists a COFE $X \in \mathfrak{C}$, two preorders \leq_1 and \leq_2 making X into preordered COFEs X_1 and X_2 , and an isomorphism ξ of COFEs

$$\xi: X \to \mathfrak{U}(F_1(X_1, X_2))$$

Let \leq_{F_1} and \leq_{F_2} be preorders on $F_1(X_1, X_2)$ and $F_2(X_1, X_2)$, respectively. The isomorphism of COFEs ξ further satisfies the following two properties

$$\begin{array}{l} x \leq_1 y \iff \xi(x) \leq_{F_1} \xi(y) \\ x \leq_2 y \iff \xi(x) \leq_{F_2} \xi(y) \end{array}$$

and thus gives rise to two isomorphisms in \mathfrak{P}

$$\xi: X_1 \xrightarrow{\cong} F_1(X_1, X_2)$$

$$\xi: X_2 \xrightarrow{\cong} F_2(X_1, X_2).$$

Proof. From Theorem 2.1 we have two objects $X, Y \in \mathcal{P}$ and two isomorphisms

$$\begin{split} \xi_X &: X \xrightarrow{\cong} F_1(X,Y) \\ \xi_Y &: Y \xrightarrow{\cong} F_2(X,Y). \end{split}$$

and from the discussion above we have an isomorphism

$$\zeta = \mathfrak{U}(\xi_Y^{-1}) \circ \mathfrak{U}(\xi_X) : \mathfrak{U}(X) \xrightarrow{\cong} \mathfrak{U}(Y).$$

Define $X_1 = X$ and let $X_2 \in \mathbb{P}$ be the preordered COFE with $\mathcal{U}(X)$ as the underlying COFE and the order \leq_2 defined as

$$x \leq_2 y \iff \zeta(x) \leq_Y \zeta(y).$$

Then we have $\zeta: X_2 \xrightarrow{\cong} Y$ in \mathfrak{P} and so (recalling $X_1 = X$) we have the following isomorphisms in \mathfrak{P}

$$\xi_1 = F_1(\operatorname{id}_{X_1}, \zeta) \circ \xi_X : X_1 \cong F_1(X_1, Y) \cong F_1(X_1, X_2)$$

$$\xi_2 = F_2(\operatorname{id}_{X_1}, \zeta) \circ \xi_Y \circ \zeta : X_2 \cong Y \cong F_2(X_1, Y) \cong F_2(X_1, X_2)$$

as required. By definition we have $\mathfrak{U}(\zeta) = \mathfrak{U}(\xi_Y^{-1}) \circ \mathfrak{U}(\xi_X)$ and so from the assumption $\mathfrak{U} \circ F_1 = \mathfrak{U} \circ F_2$ we get

$$\mathfrak{U}(\xi_2) = \mathfrak{U}(F_2(\mathrm{id}_{X_1},\zeta)) \circ \mathfrak{U}(\xi_Y) \circ \mathfrak{U}(\zeta) = \mathfrak{U}(F_1(\mathrm{id}_{X_1},\zeta)) \circ \mathfrak{U}(\xi_X) = \mathfrak{U}(\xi_1)$$

which concludes the proof. The sought for ξ is $\mathfrak{U}(\xi_1)$.

References

[BST10] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. The category-theoretic solution of recursive metric-space equations. *Theoretical Computer Science*, 411(47):4102–4122, 2010.