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Abstract

In this dissertation we study applications and semantics of guarded recur-
sion, which is a method for ensuring that self-referential descriptions of ob-
jects define a unique object.

The first two chapters are devoted to applications. We use guarded re-
cursion, first in the form of explicit step-indexing and then in the form of
the internal language of particular sheaf topos, to construct logical relations
for reasoning about contextual approximation of probabilistic and nonde-
terministic programs. These logical relations are sound and complete and
useful for showing a range of example equivalences.

In the third chapter we study a simply typed calculus with additional
“later” and “constant” modalities and a guarded fixed-point combinator.
These are used for encoding and working with guarded recursive and coin-
ductive types in a modular way. We develop a normalising operational se-
mantics, provide an adequate denotational model and a logic for reasoning
about program equivalence.

In the last three chapters we study syntax and semantics of a dependent
type theory with a family of later modalities indexed by the set of clocks, and
clock quantifiers. In the fourth and fifth chapters we provide two model con-
structions, one using a family of presheaf categories and one using a gener-
alisation of the category of partial equilogical spaces. These model construc-
tions are used to design the rules and prove consistency of the type theory
presented in the last chapter.

The type theory is a version of polymorphic dependent type theory with
one kind, the kind of clocks, and a family of universes. The modalities and
clock quantifiers are used for defining coinductive types and functions on
them. The type theory is interesting because the guardedness condition, en-
suring that (co)recursive definitions define unique objects, is expressed us-
ing types, in contrast to a syntactic guardedness condition. This allows for a
modular treatment of (co)recursive definitions.
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Resumé

I denne afhandling studerer vi anvendelser og semantik for “guarded” rekur-
sion, en metode, der kan bruges til at sikre at selvrefererende beskrivelser af
object definerer et unikt objekt.

De første to kapitler er helliget anvendelser. We bruger “guarded” re-
kursion, først i form af eksplicit “step-indexing” og senere i form af det in-
terne sprog for bestemte “sheaf toposes”, til at konstruere logiske relatio-
ner til at ræsonnere om kontekstuel ækvivalens af probabilistiske og ikke-
deterministiske programmer. Disse logiske relationer er sunde og komplette
og nyttige til at vise program ækvivalenser.

I det tredie kapitel studerer vi en simpelt-typet lambdakalkyle med nye
“later” og “constant” modaliteter samt en “guarded” fixpunktsoperator. Dis-
se bruges til at indkode og arbejde med “guarded” rekursive og coinduktive
typer på en modulær facon. We præsenterer en normaliserende operationel
semantik, giver en adækvat denotational model og en loik til at ræonnere om
program ævkivalens.

I de sidste tre kapitler studerer vi syntax og semantik for afhængig ty-
peteori med en familie af “later” modaliteter, indekseret over en mænde af
ure og ure kvantorer. I det fjerde og femte kapitel præsenterer vi to model
konstruktioner, en via en familie af “presheaf” kategorier og en via en gene-
ralisering af “equilogical spaces”. Disse model konstruktioner anvendes til
at designe typeregler og bevise konsistens af typeteorien præsenteret i det
sidste kapitel.

Typeteorien er en version af polymorf afhængig typeteorie med en “kind”
af ure og en familie af universer. Modaliteterne og kvantorerne for ure bru-
ges til at definere koinduktive typer og funktioner mellem disse. Typeteo-
rien er interessant fordi betingelsen for at en definition er korrekt “guar-
ded” udtrykkes via typer, i modsætning til via syntaktiske begrænsninger
på programmer i typeteorien. Dette muliggør en modulær beskrivelse af ko-
rekursive definitioner.
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Chapter 1

Introduction

This PhD dissertation is a collection of six papers dealing with applications
and semantics of guarded recursion in its various forms. In this introduc-
tion we hope to describe the background and motivation for considering the
problems addressed in the included papers.

We aim to explain the applications of guarded recursion first and then pro-
vide some mathematical motivation, deriving the basics of guarded recursion
using some well-known mathematical facts. This derivation will not be en-
tirely correct in details, and, indeed, there will be some amount of hand-
waving, but hopefully the intuitions provided will demystify the nature of
guarded recursion as understood in this dissertation and make it easier to
understand the ideas behind the technical details considered in the papers.

In this dissertation, by guarded recursion we mean self-referential con-
structions where the self-reference is somehow guarded by a “later” modality,
either a modality on types or a modality on propositions. This is in contrast
to other kinds of “guarded recursion” [34] which are syntactic restrictions
on the forms of definitions allowed. This latter kind of guarded recursion
can, for instance, be found in some proof assistant based on type theory, like
Coq [68].

In Section 1.4 of this introduction we provide a more detailed discus-
sion of contributions of individual papers contained in the dissertation. In
Section 1.5 we discuss some problems left open in the included articles and
possible directions for future work.

We will discuss some related work throughout the introduction, but more
detailed comparisons are left to individual chapters. Section 1.7 defines some
common notations used throughout the dissertation.

1.1 Background

In recent years considerable progress has been made on reasoning about pro-
gramming languages containing a wide array of features: local and higher-
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4 Introduction

order store, recursive types, impredicative polymorphism, nondeterminism,
etc. [5, 39, 40, 55, 91, 93] Different methods have been developed. Rang-
ing from relational methods for reasoning about contextual approximation
and equivalence in these languages to higher-order separation logics for rea-
soning about safety properties of single programs. These methods now al-
low very general specifications and proofs of correctness of sophisticated li-
braries that utilise a combination of local higher-order state, shared higher-
order state and concurrency. Such libraries are commonly used to efficiently
implement other, more high-level, constructs and libraries.

A central technical device behind a lot of these advances is step-indexing,
in various forms, from very elementary presentations to the use of inter-
nal languages of particular toposes. Viewed in the most pragmatic way,
step-indexing simply means adding natural numbers (the steps1) at different
places in definitions in order to get a handle on recursion. These logical steps
are not arbitrary, but they need to be connected to some notion of a “step”
related to the behaviour of programs in the programming language being
modelled. For instance, the logical steps could be related to the number of
concrete steps in the operational semantics it takes a program to terminate.

The simplest use of step-indexing is when we consider a language with
general recursive types (this means recursive types where the type variable
can appear positively, negatively or both). Let us write µα.τ for the recursive
type where α is the recursion variable and let fold and unfold be the intro-
duction and elimination forms. If the reader is unfamiliar with these Pierce
[75] provides a good introduction.

Suppose we wish to construct an operationally based logical relation in
the style of Pitts [78] for proving contextual equivalence of programs. Then
the first idea would be to define the interpretation of the recursive type µα.τ
as

~µα.τ�ϕ =
{
(foldv,foldv′)

∣∣∣∣ (v,v′) ∈ ~τ [µα.τ/α]�ϕ
}

which states that two values are related at type µα.τ if they are canonical
forms of this type and the values v and v′ are related at the unfolded type.
Here ϕ is the valuation, providing relations for the free type variables of
µα.τ . This is arguably the most intuitive definition. The problem, however, is
that the unfolded type is (in general) bigger than the original type, and so we
cannot appeal to induction on the size of the type to ensure that the logical
relation is well-defined. Since the type variable α can appear positively or
negatively or both we cannot appeal to Knaster-Tarski’s fixed point theorem
in the interpretation either.

The solution using step-indexing is to add an additional component to
the interpretation of the type, which intuitively indicates for how many steps

1Sometimes these steps are called abstract, or logical steps to differentiate them from
concrete steps which are given by the small-step operational semantics.
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the values are related. Thus the definition becomes (approximately)

~µα.τ�ϕ =
{
(n,foldv,foldv′)

∣∣∣∣ n > 0→ (n− 1,v,v′) ∈ ~τ [µα.τ/α]�ϕ
}
. (1.1)

It can be shown that this definition is well-formed by well-founded in-
duction on the lexicographic order of the index n and the size of the type: the
unfolded type gets bigger, but the step-index gets smaller. Amal Ahmed [5,
6] provides a good example of this form of use of step-indexing, explain-
ing constructions in detail. In this dissertation, Chapter 2 contains an ap-
plication of this technique to construct a logical relation for a probabilistic
language.

A more intricate example of the use of step-indexing arises if we wish to
construct a logical relation for a language with higher-order local store. In
this case we get a so-called type-world circularity as observed by Ahmed [4].

The idea is that now a type is not only a relation on values, but because
of local state it needs to be indexed by a world as well. The world can be
thought of as the “abstract” state of the program. It specifies in particular
the set of locations which are currently allocated and some information about
the values that can be stored in those locations. If we are building a logical
relation for reasoning about contextual equivalence then the world should
specify for each valid location the equality on the values stored there. But
the equality on the values stored there also depends on the current world,
since locations can store functions or other references!

So, simplifying a bit, we have the following two desiderata where Val is
the set of values of the language and Loc is some countably infinite set of
“locations” (not necessarily physical locations).

T �W →mon P (Val×Val)

W � Loc→fin T
(1.2)

The monotonicity requirement in the first equation is needed, intuitively, be-
cause if two values are related now, allocating some more references should
not invalidate this. If we only have first-order state then this recursive defini-
tion of types and worlds is unnecessary since only, e.g., integers can be stored
and so the relations stored in the world need not depend on the world, as they
have to if we have the ability to store other locations or whole functions.

As an alternative to solving (1.2) we could just solve the following recur-
sive equation

T � (Loc→fin T )→mon P (Val×Val) (1.3)

and then define the worldsW to be as required in (1.3). It is an exercise in set
theory to show that sets T andW satisfying either (1.2) or (1.3) do not exist.
The reason is that there are too many functions between sets, and taking only
the monotone ones does not weed out enough of them. Thus we either need
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a different approach to modelling or we need to modify the equation in order
to solve it. Step-indexing has been used successfully in doing the latter.

One classical approach [90] to solving such domain equations is offered
by domain theory. In such a setup T and W would be some kinds of do-
mains, e.g., they could be ω-cpo’s. This approach has not been used in recent
applications because when using T to define, e.g., a logical relation, the in-
tuitively correct interpretation of, e.g., the reference type, would not give a
Scott continuous function. This of course does not necessarily mean that it is
not possible to use classical domain theory to get a useful solution and thus
a useful model, but it does appear that the kind of approximation one gets
by using domains is not the correct one.

1.2 Abstracting Step-indexing

The approach which works quite well in connection with step-indexing is to
solve the equation in some category of metric spaces. Let us see why metric
spaces appear naturally in connection with step-indexing. Recall above that
with step-indexed logical relations, a type is interpreted not as a relation
on values (or terms), but rather as an indexed relation, thus (ignoring the
valuation ϕ for the moment)

~τ� ∈ P (N×Val×Val) .

More precisely, though, because the step-indices are connected to the be-
haviour of the program, it makes sense to require “monotonicity”, which is
the property that if (n,v1,v2) ∈ ~τ� then also (m,v1,v2) ∈ ~τ� for all m ≤ n.
Intuitively, this makes sense because (n,v1,v2) ∈ ~τ� should mean that v1 and
v2 are indistinguishable at type τ if we only have n computation steps avail-
able for observing the behaviour of v1 and v2. What computation steps and
what behaviours are depends, of course, on the particular application. In the
simplest case a computation step simply means one step in the operational
semantics and observation can be termination.

Thus we can refine the interpretation ~τ� of a type to be an element of
the set

P ↓ (N×Val×Val)

which is the set of those A satisfying the “monotonicity” property described
above.

The set P ↓ (N×Val×Val) comes equipped with a natural metric d which
measures for how many steps the sets agree:

d(X,Y ) = inf {2−n | ∀j < n,∀v1,v2 ∈Val, (j,v1,v2) ∈ X↔ (j,v1,v2) ∈ Y } .

Or in words, X and Y are at a distance 2−n if they have the same elements
with indices j < n. It is an elementary exercise to show that d is a metric
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which makes P ↓ (N×Val×Val) into a metric space, which is easily seen to
be complete. The reader will have, of course, observed, that there is nothing
particular about the set Val×Val with regards to the metric. It can be replaced
by any other set X and P ↓ (N×X) is still a complete metric space.

We have seen that changing the codomain in the equation (1.3) allows us
to equip it with a non-trivial complete metric. However to stay inside the
(suitable) category of metric spaces we need to also equip the whole right-
hand side with a structure of a metric space.

Let us fix a sufficiently large category of complete metric spaces. Notice
that the metric space P ↓ (N×Val×Val) has the distance function of a very
restricted form. All of its non-zero distances are of the form 2−n. Such metric
spaces are called bisected.

Further, note that it satisfies a stronger version of the triangle inequality.
Such spaces are sufficiently important to have a name.

Definition 1.2.1. A metric space (M,d) is an ultrametric space if d satisfies
the strong triangle inequality: for all x,y,z ∈M,

d(x,z) ≤max {d(x,y),d(y,z)} .

In this case, the metric d is called an ultrametric. �

Let us call the category of complete bisected ultrametric spaces and non-
expansive functions between them M. This category is complete and carte-
sian closed [20]. The exponential of M1 and M2 consists of non-expansive
functions equipped with the supremum metric. Recall that the function
f : (M1,d1) → (M2,d2) between metric spaces is non-expansive if it does
not increase distances: for any two x,y ∈M1

d2(f (x), f (y)) ≤ d1(x,y).

For any T ∈M the set Loc→fin T is a complete metric space for a very
natural metric: the distance between two finite maps f and f ′ is either 1 if
their domains differ or the maximum of the distances of f (`) and f ′(`) for `
in the domain of f and f ′.

The equation thus becomes

T � (Loc→fin T )→mon, n.e. P ↓ (N×Val×Val) . (1.4)

where “n.e.” is the set of non-expansive functions. If we did not use non-
expansive functions we would not have achieved much since the equation
would be the same as (1.3). The main insight when solving domain equa-
tions with mixed variance as in Smyth and Plotkin [90] or in categories of
metric spaces is to cut down the number of functions to consider. The diffi-
cult part is to cut down the number of functions sufficiently for the solution
to exist while still retaining sufficiently many of them for the application
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at hand. In domain theory this is achieved by considering only continuous
functions. In categories of metric spaces this is achieved by considering the
non-expansive functions, since this is the natural choice of morphisms be-
tween metric spaces.

With regards to step-indexing, non-expansive functions are sufficient be-
cause if we only have n steps available for observing the behaviour and we
wish to know whether two values are related, then it suffices to know the
invariant (the equality of values stored in the heap) for n steps as well.

Thus if we could solve equation (1.4) we would be well on the way of con-
structing models of languages with higher-order state. Unfortunately, this
equation does not appear to have a solution. The existence of a solution to a
recursive domain equation in categories of metric spaces typically relies on
the functor which describes the equation being locally contractive, whereas
the right-hand side of (1.4) only gives rise to a locally non-expansive functor.
We explain now what this means.

Definition 1.2.2. Let F : Mop ×M→M be a functor. The functor F is locally
non-expansive if for any X,Y ,Z,W ∈M and any f , f ′ : X → Y and g,g ′ : Z →
W we have

d(F(f ,g),F(f ′ , g ′)) ≤max
{
d(f , f ′),d(g,g ′)

}
.

The functor F is locally contractive if for any X,Y ,Z,W ∈M and any f , f ′ :
X→ Y and g,g ′ : Z→W we have

d(F(f ,g),F(f ′ , g ′)) ≤ 1
2
·max

{
d(f , f ′),d(g,g ′)

}
. �

Remark 1.2.3. In categorical terms, locally non-expansive functors are pre-
cisely the functors enriched in M, since their defining property means pre-
cisely that the action of F on morphisms is a morphism in M. �

Example 1.2.4. There is the functor 1
2 · −: it maps the metric space (X,dX) to

the metric space (X, 1
2 · dX) where (1

2 · dX)(x,y) = 1
2 · (x,y). On morphisms it

acts as the identity. �

It is an easy fact that composing any locally non-expansive functor with
the functor 1

2 · − will give a locally contractive functor.
The reason locally contractive functors are interesting is that they have

fixed points in the appropriate sense.

Theorem 1.2.5 ([7, 20]). Let F : Mop ×M→M be a locally contractive functor
such that F(1,1) is inhabited. Then there exists an inhabited metric space X ∈M
such that F(X,X) � X. If moreover F(∅,∅) is inhabited then the solution is unique
up to isomorphism in M. ♦
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Thus, coming back to the equation (1.4), if we modify it by composing
the right-hand side with the functor 1

2 · − to get the equation

T � 1
2
·
(
(Loc→fin T )→mon, n.e. P ↓ (N×Val×Val)

)
(1.5)

we can use Theorem 1.2.5 to show that it has a unique (up to isomorphism)
solution.

Remark 1.2.6. Alternatively, we could have chosen to precompose with the
functor 1

2 · to get the equation

T �
(
Loc→fin

1
2
· T

)
→mon, n.e. P ↓ (N×Val×Val) . (1.6)

which also has a solution. The solutions T1 and T2 to (1.5) and (1.6) are not
isomorphic, however the choice of which one to use in applications seems to
be largely a matter of convenience, rather than expressiveness, which sug-
gests a degree of arbitrariness in composing with 1

2 ·. Moreover, uniqueness
of the solution is not needed in the applications to models of type systems
and logics. In fact, the only property that is needed is that T is a solution and
even this can often be relaxed to the right-hand side of (1.5) being a retract
of T . �

The crucial result underlying the construction in Theorem 1.2.5 is the
basic result about metric spaces and contractive functions, the Banach’s fixed
point theorem.

Theorem 1.2.7 (Banach’s fixed point theorem). Let (M,d) be an inhabited and
complete metric space and f : (M,d)→ (M,d) a function. If there exists a con-
stant c < 1 such that for all x,y ∈M

d(f (x), f (y)) ≤ c · d(x,y)

then f has a unique fixed point. ♦

Using the solution Having the solution T to either of equations (1.5) or
(1.6) is only the first step. We need to be able to use it. Because T is a
solution we have by Theorem 1.2.5 in particular that T is a complete and
inhabited metric space. Hence Banach’s fixed point theorem applies to T .

This can be utilised when defining the logical relation. Recall that this
normally proceeds by induction on types, except that in case of recursive
types we cannot do this, since the unfolded type is bigger. However, by its
very definition recursive types are fixed points of their defining shapes. That
is, consider the type of lists of integers which satisfies [Z] � 1 + Z × [Z]. By
definition then [Z] is a fixed point of the operation α 7→ 1 + Z × α on syn-
tactic types. Thus in the semantics we should interpret the recursive types
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in an analogous way. Since T is an inhabited and complete metric space it
is most natural to try to use Banach’s fixed point theorem to construct the
interpretation of types. And indeed this works out well and this is one way
of understanding what the the construction (1.1) achieves by “decreasing the
step-index”. For more details see Chapter 2 where Banach’s fixed point the-
orem is used in just this way.

An alternative approach Some researchers, e.g. [93], have also used an al-
ternative approach when constructing step-indexed logical relations for lan-
guages with higher-order state without using the machinery of metric spaces.
This approach involves simultaneously defining worlds and the interpreta-
tion of types by carefully tracking the step-indices to ensure that the defini-
tion is well-founded.

This is doable, but since the construction is monolithic and relies cru-
cially on getting the step-indexing exactly right, it is very difficult to make
sure that what was defined is indeed correct. Using metric spaces and sep-
arating the construction of “semantic types” and worlds from the definition
of the logical relation provides a more modular construction which is easier
to understand and, more importantly, it is easier to argue that it is correct.

Generalising the metric spaces

Ultrametric spaces behave quite differently from metric spaces one encoun-
ters, e.g., in analysis, such as the space of reals. In particular, in ultrametric
spaces, given a closed ball B, every point x ∈ B is its centre and given two
closed balls B1 and B2, they are either the same or they are disjoint. This
means that given any n ∈N, closed balls of radius 2−n partition the space, or
equivalently, give rise to an equivalence relation =n defined as

x =n y↔ d(x,y) ≤ 2−n

or, equivalently, x =n y if x and y are elements of the same 2−n-ball. Obvi-
ously for any n ∈N the relation =n+1 is included in the relation =n. Finally,
if x =n y for all n then we have that d(x,y) = 0 which means x = y.

With these relations we can decompose every bisected ultrametric space
(M,d) into a sequence of its approximations X(n), for n ∈N. That is, define
X(n) to be the set of closed balls ofM of radius 2−n. Further, for each n there
is the function rXn : X(n+1)→ X(n) which takes an 2−n−1-ball to the uniquely
determined 2−n ball containing it. Such a ball exists precisely because every
point x of a closed ball is its centre.

Thus, for each bisected metric space we have a presheaf on ω, the first
infinite ordinal. Moreover, if f : (M1,d1)→ (M2,d2) is a non-expansive func-
tion and X and Y are presheaves assigned toM1 andM2 respectively then
the function f gives for each n a function fn : X(n) → Y (n) which maps a
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ball with centre x to the ball with centre f (x). Because f is non-expansive
this is well-defined, that is, independent of which x was chosen as the centre.
Moreover, it is easy to see that we have

rYn ◦ fn+1 = fn ◦ rXn

for all n, which means that f gives rise to a natural transformation X→ Y .
Thus, we have a functor, call it F, from the category M to the category of

presheaves over ω, the first infinite ordinal.
Conversely, any presheaf X over ω gives rise to a bisected ultrametric

space (M,d) in the following way. Take the underlying setM to be the set of
global elements Hom (1,X) and define the distance d(x,y) to be

d(x,y) = inf
{
2−n

∣∣∣ ∀j < n,xj(?) = yj(?)
}

where ? is the unique element of 1(n). The pair (M,d) can easily be seen to
be an ultrametric space and moreover, it is easy to see that it is complete.

A precise statement is the following.

Theorem 1.2.8 ([22]). The functor F is full and faithful. It has a right adjoint
whose action on objects is described above. In brief, the category of complete
bisected ultrametric spaces is co-reflective in the category PSh (ω).

Moreover, the inclusion F restricts to an equivalence between the category
of complete bisected ultrametric spaces and the full subcategory of PSh (ω) on
presheaves X whose restrictions are surjective functions. ♦

This result allows us to embed the metric spaces of interest into a larger
universe of presheaves on ω. One reason this is useful is that PSh (ω) has
more structure. It is a topos. Toposes are interesting because they have a
very rich internal language [59, 66], and this internal language can be used, in
our case, to construct step-indexed models where the indices do not appear
explicitly. Instead, one uses a single modality in order to “decrease the step”.
This is the �, called “later” or “delay”, modality.

The internal language of PSh (ω) was originally used by Birkedal et al.
[22] to construct a step-indexed predicate showing type safety of programs
written in an ML-like language with higher-order state, but the realisation
that step-indexing is intimately related to modal logic goes back further [9].
In Chapter 3 we use the internal language of the topos of sheaves over ω1,
the first uncountable ordinal, equipped with the Alexandrov topology to con-
struct a step-indexed logical relation for reasoning about must equivalence,
without working with steps explicitly.

Let us come back to our two running examples and see how working in
the internal language is helpful. There is a functor I : PSh (ω)→ PSh (ω). It
maps the object

X(0) X(1) X(2) · · ·
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of PSh (ω) to the object

1 X(0) X(1) X(2) · · ·
!

of PSh (ω) where ! is the unique function from X(0) to the singleton set 1.
Recall the equivalence in Theorem 1.2.8. If all of X’s restriction maps are

surjective and X(0) is inhabited, then also all of I X ′s restriction maps are
surjective. Thus I gives rise, through the equivalence in Theorem 1.2.8, to a
functor on the category of inhabited complete bisected ultrametric spaces.

What is this functor? It is, up to isomorphism, the functor 1
2 ·−mentioned

above, which leaves the underlying set the same, but multiplies distances by
1
2 .

Now recall the “typical” domain equation in metric spaces

T � (Loc→fin T )→mon, n.e. P ↓ (N×Val×Val) .

First, the metric space P ↓ (N×Val×Val) is isomorphic to the space of
functions Val ×Val→ P ↓ (N) and P ↓ (N), as a metric space, is precisely the
set of global elements of the subobject classifier Ω of the topos PSh (ω). The
morphism in PSh (ω) are inherently the non-expansive functions. Hence we
can express the equation as the following equation in the topos PSh (ω).

T � (Loc→fin T )→mon (Val×Val)→Ω.

Further, the object (Val ×Val)→Ω is the internal power set, so we have the
equation

T � (Loc→fin T )→mon P (Val×Val) (1.7)

where→mon is used to denote the subobject of the exponential consisting of
monotone functions, as expressed in the internal language of PSh (ω). To
summarise, the equation as stated in PSh (ω) looks simpler, since there is no
more explicit indexing and the codomain of the equation is just the (internal)
set of relations on values.

Again, we cannot expect to solve (1.7) as such. However solutions ex-
ist [22] for suitably guarded equations, which is a condition completely anal-
ogous to the functor defining the equation being locally contractive. In brief,
the equation

T � (Loc→fin IT )→mon P (Val×Val) (1.8)

has a unique (up to isomorphism) solution.
One of the benefits in solving the equation in PSh (ω) is that we can keep

working internally. And internally elements of P (Val×Val) are simply rela-
tions on values. Indexing is not visible anymore. Hiding the indexing makes
a lot of the definitions more straightforward and more familiar. The price to
pay is that we must now use the �modality at certain places and that we are
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less flexible since we cannot manipulate the indices directly and all the con-
structions we do must make sense as objects of PSh (ω). An example of this
appears in Chapter 3 where we must use a “stratified” divergence predicate
instead of arguably more natural stratified termination predicate, which is
what is used in previous work. The reason is that the stratified termination
predicate is not a predicate in the internal logic of the topos Sh (ω1).

This modality � is a modality on propositions, that is, subobjects, as op-
posed to I which is an operation on types. Now propositions in the internal
language of PSh (ω) are, intuitively, also indexed. That is, whether they hold
or not depends on the current step-index. Intuitively, if p is a proposition,
�p holds for n+ 1 steps if p holds for n steps, and �p also holds when there
are no more steps available.

This modality allows us to state an internal version of Banach’s fixed point
theorem which can then be used, for instance, to construct the logical rela-
tion.

Definition 1.2.9 ([22]). Internally, a function f : X → Y is contractive if the
following formula holds

∀x,x′ : X,�(x = x′)→ f (x) = f (x′). �

For internally contractive functions we have the following internal Ba-
nach’s fixed point theorem.

Theorem 1.2.10 ([22]). Internally, if f : X→ X is contractive and X is inhabited
then f has a unique fixed point. ♦

Note that this holds even ifX’s restrictions are not surjective in which case
Theorem 1.2.10 is simply the original Banach’s fixed point theorem stated in
different terms.

Remark 1.2.11. There is also a version of “Banach’s fixed point theorem”
expressible using the I, which we will describe in Section 1.3 below. This
states that any morphism f : X → X that factors through I X has a unique
fixed point, which is a global element u : 1→ X satisfying f ◦u = u.

That version of the Banach’s fixed point theorem is useful when work-
ing with terms, and is used extensively in Chapters 4 and 7. In contrast,
Theorem 1.2.10 is useful also when working with relations in the internal
higher-order logic.

These two theorems are intimately related, of course, and in higher-order
logic relations are just terms of an appropriate type. The difference however
is that higher-order logic is a much more expressive language than simple
type theory, which is the language for working with terms.

For a more thorough description of the relationship between the two in-
ternal fixed-point theorems we refer to Birkedal et al. [22]. �
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With these concepts, the interpretation of the recursive type µα.τ can be
defined to be the unique fixed point of the function mapping the relation R
on values to the relation{

(foldv,foldv′)
∣∣∣∣�(

(v,v′) ∈ ~τ�ϕ,α 7→R
)}

which is easily seen to be contractive according to Definition 1.2.9. In Chap-
ter 3 we use essentially this fixed point theorem, but modified slightly since
we are working in the topos of sheaves over ω1.

Thus, to conclude this section, step-indexing is an important tool, how-
ever explicit indexing quickly becomes tedious and hard to manage. Working
in the internal language of a topos like PSh (ω), or in the internal language of
related hyperdoctrines, as done by Jung et al. [55], the construction of step-
indexed logical relations and logics can be somewhat simplified by hiding
the indexing and using the � and Imodalities.

Of course every topos is also a model of extensional dependent type the-
ory [51, Chapter 10], and so we could also use this as an internal language,
i.e., as a language for describing objects and morphisms. Because we are
working with a particular model, namely the topos PSh (ω), we can extend
the type theory with additional modalities. In connection with this, we come
to the second part of the introduction and, indeed, the second part of the
dissertation.

1.3 Guarded Recursion and Coinductive Types

Proof assistants based on dependent type theory such as Coq [68] do have
support for working with coinductive types. However coinductive types
present inherent difficulties. Chief among these is that inhabitants of coin-
ductive types are inherently infinite objects which need to be represented
and manipulated in a finitary way and ensuring that recursive equations de-
scribing elements of coinductive types have unique, or at least principled, so-
lutions is a difficult problem. It is hoped that an approach based on guarded
recursion could be used for working with coinductive types, however there
are still many questions about its practicality. But let us not get ahead of
ourselves.

Semantically, coinductive types are final coalgebras of suitable functors
describing their shape. From this2 we get a definition principle for defining
functions whose codomains are coinductive types. The simplest example of a
coinductive type is the type of streams3 (say, streams of integers). The shape

2For defining elements it would suffice if they were only weakly final coalgebras and in-
deed, in the type theory of Coq coinductive types can only be proved to be weakly final.

3Although the type of streams is perhaps too simple. Coinductive types involving the
sum type are somewhat more troublesome, but the example of streams is less messy.
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of streams of integers is described by the functor S

S(X) = Z×X.

Let s : [Z]→ S ([Z]) be its final coalgebra. Recall that being a final coalge-
bra means that for any morphism ϕ : X → S(X) there is a unique morphism
unfoldϕ : X→ [Z] which makes the following diagram commute.

X [Z]

S(X) S ([Z])

ϕ

unfoldϕ

s

S(unfoldϕ)

This works well for a large class of functions one wishes to define, however
it is not modular in the following sense.

Suppose we have defined the map function on streams, which can easily
be done using the universal property described above, and we wish to use
this function to define the stream nats containing all the natural numbers.
In a lazy language such as Haskell this can easily be done, and the resulting
program has correct operational behaviour, as

nats = 0 : map succ nats (1.9)

where succ is the successor function and : is “cons”, the stream constructor.
However using just the universal property we cannot define nats directly.

We can only define constant streams directly. By directly we mean to define
an algebra map ϕ such that unfold ϕ : 1→ [Z] maps the unique element of
1 to the stream of natural numbers.

Of course, we can define a more general function intsfrom which takes as
argument an integer n ∈Z and produces the stream of integers starting at n.
Then nats = intsfrom0. However when defining intsfrom we are essentially
also defining a very special case of the map function at the same time. In this
sense, definitions using just the universal property are not modular.

The definition principle for coinductive types in, for instance, Coq, is
somewhat different from using the final coalgebra property. However it has
similar limitations and in particular it does not accept (1.9) as a valid defi-
nition because it violates the guardedness condition. This is a syntactic condi-
tion which is quite elaborate, but it one of its requirements is that the valid
self-references in a coinductive definition must appear immediately under a
constructor. The right-hand side of (1.9) clearly violates this since the re-
cursive occurrence of nats does not appear immediately beneath the stream
constructor :, but rather is first passed to the function map.

There are good reasons for this guardedness check. The reason why the
definition (1.9) is good is that the function map is well-behaved. For instance
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if we replaced map succ nats by tail nats on the right-hand side of (1.9) the
definition would not be good, which is to say there would be infinitely many
streams satisfying the equation (these would be all the streams starting with
0). What is lacking is a way to distinguish good and bad functions based
on types alone. Guarded recursion achieves just that. It enriches the type
system which then allows us to express when a function can be used in a
recursive definition.

Recall the discussion above in Section 1.2 which related the use of I and
� modalities to metric spaces. Let us see why coinductive types are inti-
mately related to complete metric spaces.

Let F : Set→ Set be a functor that preserves ωop limits. There are many
such functors. In particular all the polynomial functors (in general, not only
finitary ones) satisfy this property. Recall that in such a case the functor F
has a final coalgebra and its carrier is the limit of the following chain.

F(1) F2(1) F3(1) · · ·
F(!) F2(!) F3(!)

(1.10)

Call this carrier νF. Recall the construction of limits in Set. It gives us the
following concrete description of νF as a set of compatible sequences.

νF = {{xn}n∈N
∣∣∣ ∀n,xn ∈ Fn(1)∧Fn(!)(xn+1) = xn}

Sets of sequences can be equipped with a very natural metric based on how
far the sequences agree. Define a metric dF on νF as

dF
(
{xn}n∈N , {yn}n∈N

)
= inf

{
2−k

∣∣∣ ∀j < k,xj = yj
}
.

It is easy to see that the metric dF makes νF into a bisected metric space
which is also complete. So perhaps we could use Banach’s fixed point theorem
to define elements of coinductive types.

Let us see that this works on an example. Take the functor S(X) = Z×X
describing the shape of streams of integers. A simple calculation shows that
the set νS is the set of streams of integers and the metric dF compares how
far the streams agree:

dF(xs,ys) = inf
{
2−k

∣∣∣ ∀j < k,xsj = ysj
}
.

What is a non-expansive function νS→ νS? A simple calculation shows
that these are precisely the functions f , such that for any stream xs, the n-
th element of f (xs) only depends on the elements xsj for j ≤ n. There are
plenty of such functions. For instance for any f : Z→Z the function map f
is non-expansive, but note that for instance the tail function tail is not non-
expansive.
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Remark 1.3.1. Non-expansive functions in this context are often also called
causal functions which makes sense if we think of streams as time-indexed
collections of elements. At time t0 we have only the first element available, at
time t1 > t0 the first and second element and so on. Causality then means that
output at time tn does not depend on the input which will only be available
in the future, say at time tn+1. �

What is a contractive function νS → νS? Recall from Section 1.2 that
these are precisely the functions that factor through 1

2 · νS so we might as
well ask what are the functions

1
2
· νS→ νS.

A simple calculation shows that such functions are precisely the functions f
such that for any stream xs, the n-th element of f (xs) depends only on the
elements xsj for j < n. Note the strictly less than relation.

With these concepts we can explain why (1.9) is a good definition of the
stream of natural numbers. The equation (1.9) defines a function νS→ νS
which is a composition of functions map succ and the function 0 : −. The
function map succ is non-expansive as explained above, and the function
0 : − is contractive. Hence their composition is a contractive function on νS.
Since νS is clearly inhabited we can use Banach’s fixed point theorem to show
that there exists a unique stream satisfying equation (1.9).

In contrast, if we replace map succ with the function tail in the right-
hand side of (1.9) then the composition of 0 : − and tail would only be non-
expansive, but not contractive. Non expansive functions in general do not
have fixed points, and even if they do, the fixed points are not necessarily
unique, as we can clearly see on this example.

To summarise, a recursive definition of a stream xs as

xs = ϕ(xs)

will be good if ϕ is contractive.4

Thus what we need in our type system is to be able to express when a
function is contractive. But recall that ifM is a bisected metric space, then
contractive functions fromM toM are precisely the non-expansive functions
from 1

2 ·M toM. And the functor 1
2 · − is closely related to the Imodality of

PSh (ω), except that I is better behaved on empty spaces.
As we discussed in Section 1.2 bisected complete ultrametric spaces live

as a full subcategory in the topos PSh (ω) and coincidentally the diagram
(1.10) defining the carrier of the final coalgebra of F is an object of PSh (ω).
In fact, for a large class of functors F we can construct the diagram (1.10), as

4This is not an if and only if. In general there are functions which are not contractive but
still have unique fixed points.
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an object of PSh (ω), by using the Imodality of PSh (ω). This is best seen on
an example, so we shall do just that.

Suppose F : Set→ Set is the functor F(X) = Z ×X describing the shape
of streams. We can define an analogous functor F′ : PSh (ω) → PSh (ω) as
F′(X) = ∆(Z) ×X where ∆ : Set→ PSh (ω) is the constant presheaf functor.
Finally, let G = F′◦ I. This functor has a unique (up to isomorphism) fixed
point, so let us see what it is. We compute

G(0) �Z

G(1) �Z×Z
G(2) �Z×Z×Z

...

G(n) �Z
n+1

(1.11)

We can thus see that G is isomorphic to the diagram (1.10). Indeed, this
holds in general for any polynomial functor F : Set→ Set. Any such functor
can be lifted to a functor F′ : PSh (ω)→ PSh (ω) and after precomposing with
Iwe get the diagram (1.10) as the unique fixed point of the resulting functor
in PSh (ω).

This is interesting because in PSh (ω) for each X and each f : X→ X that
factors through I X there is a unique global element u : 1 → X such that
f ◦u = u, i.e., f has a unique fixed point. In fact more holds. For each X there
is a morphism nextX : X→ IX. We then have that for any objectX of PSh (ω)
a morphism fixX of type (I X → X)→ X satisfying for all f : IX → X the
equality

fixX f = f
(
next(fixX f )

)
.

This fixX is precisely what we need. It takes a contractive function and pro-
duces its fixed point. Thus we can model the “guarded” fixed point combi-
nator.

Compared to, say, the fixed-point combinator of PCF, which has the type
(A → A) → A the guarded fixed point combinator cannot be used to vacu-
ously construct inhabitants of types. For instance, there is no term of type
I 0 → 0 where 0 is the initial object in PSh (ω). Observe as well that now
we have guaranteed existence of fixed points purely based on types. There
are no more side-conditions, like the type X being inhabited, which are nec-
essary if we are working with metric spaces. This is because the modality I
on PSh (ω) is better behaved on the initial object as the functor 1

2 · − is on the
initial object of the category of bisected complete ultrametric spaces. Though
these two are equivalent on inhabited objects as explained in the preceding
sections.
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However by adding the I modality and the fixed-point combinator fix
we have introduced new types and terms. Thus we also need a new equa-
tional theory and possibly some more auxiliary constructs. This is one of the
problems addressed in Chapters 4 and 7.

Generalising guarded recursion

The use of a guarded fixed point combinator to get some benefits of general
recursion, but still disallowing vacuous non-termination, is due to Nakano
[72] who added such a fixed point combinator to the simply typed calculus
and proved normalisation of the calculus.

As above, the fixed-point combinator in this calculus is a term of type

(I A→ A)→ A

and one way to think of it is that it is reflecting Banach’s fixed point theorem
in a type system. In fact, Birkedal et al. [19] constructed a model of the cal-
culus using the category of inhabited complete bisected ultrametric spaces,
following motivation we have outlined above, where this fixed point combi-
nator is justified precisely by appeal to Banach’s fixed point theorem.

However such a calculus on its own is not so useful for working with
coinductive types. To see this recall the type of (guarded) streams of integers
[Z], which is the unique fixed point the functor G described in (1.11). This
type satisfies

[Z] �Z× I [Z].

What if we wish to take the tail of this stream? We can certainly do that, but
the type of the tail function is [Z]→I [Z] and there is no way of removing
the Imodality in general without making it redundant. If we think of types
as metric spaces again for a moment, we can see that the canonical function
from [Z] to 1

2 · [Z], which is the function mapping x to x, does not have an
inverse. To be more precise, it does not have an inverse in M, that is, it does
not have a non-expansive inverse. Thus to get rid of the I we need to allow
more morphisms, however this needs to be done in a controlled way lest we
trivialise the modality. We still wish the functions I X → X to be the ones
with unique fixed points.

This suggests that perhaps we should work in two different settings. In
one we have something akin to Banach’s fixed point theorem available for
defining functions and elements of coinductive types, but once these ele-
ments are defined, we should pass to a setting where we have more mor-
phisms available so we can use the defined element more liberally.

A Nakano [72] like calculus with guarded recursion was extended with
clocks and clock quantifiers in order to get just this ability by Atkey and
McBride [11]. Clocks are simply names, drawn from some countably infinite
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set. The idea is that for each clock κ there is a modality Iκ completely analo-
gous to the Imodality discussed above. Where multiple different modalities
are useful is when working with nested coinductive types, but we shall not
dwell on that here. The intuition behind naming the set of names “clocks”
is that elements of the type Iκ τ are thought to be elements of type τ which
we only have available later, that is, after we have done some work. Different
clocks then correspond to the ability to delay along different time streams.

The main new idea of their calculus are clock quantifiers ∀κ. These allow
for a controlled elimination of Iκ using a term of type (∀κ. Iκ τ) → (∀κ.τ).
The intuition is that elements of the type ∀κ.τ are elements of τ that are
always available. These clock quantifiers behave very similarly to polymor-
phic quantification ∀α in System F, although in Atkey and McBride’s calcu-
lus there is one important difference and it is to do with the elimination rule,
since in their calculus there is no clock substitution in general, but only clock
weakening and permutation. This causes significant problems when trying
to extend their approach to a dependently typed calculus. This led to a more
refined model [28] supporting clock substitution in general. This model is
explained in Chapter 5.

Of course, if we have a term t of type τ we cannot necessarily form a term
of type ∀κ.τ . We can only form a termΛκ.t of type ∀κ.τ if the term t does not
depend on any variables that vary along the κ dimension. This is completely
analogous to how one introduces terms of type ∀α in a System F like setting
and this restriction is the reason why ∀κ allows for a controlled elimination
of I.

In such a calculus Atkey and McBride showed that final coalgebras of a
large class of functors can be encoded with the help of I as we have argued
in the previous section. In particular, using clock quantifiers, we can get real
streams in the calculus which in particular means we can type the ordinary
tail function.

This works as follows. If we start with the functor F : Set→ Set and we
wish to construct its final coalgebra what we do is first take the (unique) fixed
point of F lifted to PSh (ω) and precomposed with I. We get the diagram
(1.10) (page 16) as an object of PSh (ω). What the ∀κ does is take the limit
of this diagram to get an object of Set again. As we have mentioned above,
this is one way to construct final coalgebras of a wide class of functors in Set.
If we instead think in terms of metric spaces then ∀κ is, intuitively5, simply
the forgetful functor from the category M to Set.

Of course to reflect this semantic construction into a type theory we need
to add sufficiently many rules for working with ∀κ and I. The calculus in
Chapter 7 is expressive enough to encode final coalgebras for polynomial
functors using I and ∀κ and it is expressive enough to reason about elements

5When there are multiple clocks we can sadly no longer think in terms of ordinary metric
spaces.
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of final coalgebras defined in such a way.
One alternative to clocks and clock quantifiers is to use another modality,

called � or �. The idea is the same as for the clock quantifier ∀κ, but the
technicalities are somewhat different, since we are not switching between
different settings, as with the ∀κ, but we always stay inside one universe, the
topos PSh (ω).

Such a modality on proposition in context of guarded recursion was first
introduced in [26], an extended version of which appears as Chapter 3 of
this dissertation. In [31], an extended version of which appears as Chapter 4,
we have developed a simply typed calculus with two modalities, I and �
and provided a normalising operational semantics, together with a program
logic, which also has two modalities, � and �.

1.4 Outline of the Dissertation

This dissertation consists of six papers, five of which have been presented
at peer-reviewed conferences or accepted for publication, and one of the pa-
pers (Chapter 6) is currently under review. Each of the following chapters
is based on one publication, but some have been considerably extended to
include more explanations and proofs. We will discuss the main themes and
contributions of these publications below, but first we mention dependencies
between the chapters.

The first three chapters are independent of the last three. Chapters 2,
3 and 4 can be read independently, except that it might be helpful to read
Chapter 2 before reading Chapter 3 if the reader is not familiar with step-
indexed logical relations. However there is no formal dependency.

Chapter 6 relies heavily on results in Chapter 5, which can be read inde-
pendently of other chapters.

Chapter 7 can be read independently of Chapters 5 and 6 if the reader
is not too interested in the semantics, but to understand the motivations for
the design of the rules understanding the two chapters on the semantics is
necessary.

Chapter 2: Step-indexed Logical Relations for Probability

Chapter 2 is an updated and extended version of [25]. It is extended with
additional proofs and examples which only appeared in the appendix to the
published version.

The paper constructs a step-indexed logical relation for a call-by-value
probabilistic language with a rich type system, including in particular im-
predicative polymorphism and general iso-recursive types. We only consider
a language with primitives for discrete probability distributions. The main
part of the paper deals with a language without references. In the end we
extend the language with local ground store.
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The main result of the paper is that the logical relation we construct pro-
vides a sound and complete method for reasoning about contextual approx-
imation and equivalence of programs (in both languages, with and without
state). This method moreover appears to be useful for reasoning about a
range of examples, although there are examples of equivalences which we do
not know how to deal with. See Section 1.5 below for a discussion of one
such example and the reasons it is beyond the reach of our logical relation.

One of the interesting points about this logical relation is how little needs
to change compared to a step-indexed logical relation for a deterministic lan-
guage. Indeed, most of the construction stays the same, it is only in the lifting
of relations on values to relations on expressions that we need to change the
definitions. This part is not surprising, since this lifting uses the operational
behaviour of terms. The reason why very little needs to change seems to be
the use of biorthogonality, or >>-closure.

The logical relation uses step-indexing to ensure that the interpretation
of types is well-defined in presence of general recursive types.

The motivation for considering the problem of extending step-indexed
logical relations to the probabilistic case were results by Dal Lago et al. [36]
and Crubillé and Lago [35] who developed (bi)simulation techniques for rea-
soning about similar languages, although they did not consider state.

Chapter 3: A Model of Countable Nondeterminism in Guarded
Type Theory

This chapter is a version of [26] extended with an appendix which provides
more details and proofs of claims made in the paper.

We consider a System F like language with general recursive types and
with a countable choice primitive and we use the internal language of the
sheaf topos Sh (ω1), where ω1 is the first uncountable ordinal equipped with
the Alexandrov topology, to construct the step-indexed logical relation and
prove it sound and complete with respect to must contextual equivalence.
The logical relation itself is based on previous work [23] which uses step-
indexing using the ordinal ω1.

This research was prompted by the following question: What breaks if
we try to construct the logical relation in the internal language of PSh (ω)?
In retrospect, this is quite embarrassingly clear, as is often the case, and it is
to do with adequacy, but we are getting ahead of ourselves.

The construction of the logical relation and the proof of the fundamental
lemma (more generally, the proof of congruence) can be done in the internal
language of PSh (ω). Recall that one way to define contextual equivalence is
as the largest adequate congruence relation, thus to show soundness of the
logical relation we need it to be adequate. This property fails if we work in
the internal language of PSh (ω) and the reason is that the must-termination
predicate ⇓ is not continuous, i.e., it does not preserve unions, and so to de-
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fine ⇓ by iteration we need to iterate up to some higher ordinal. The ordinal
ω1 suffices [10, 38], but in fact it does not matter that the ordinal is ω1. What
matters is that an ordinal exists where the iteration of the defining functional
of ⇓ stabilises.

But how is this reflected in the internal language? If our internal language
is just higher-order logic together with the�modality it is not visible. In fact,
there is a logical functor from Sh (ω1) to PSh (ω) which moreover preserves�,
so just in this fragment we cannot hope to find a property of the internal
language of Sh (ω1) that would allow us to prove adequacy.

Recall that with step-indexed logical relations we construct approxima-
tions of the desired relations on values and expressions. Two expressions are
then related if they are related for all steps. It is this ability to say that two
expressions are related for all steps that we need to bring into the internal
language. The � modality introduced in the paper achieves this and it is in
connection with this modality that we find a property of Sh (ω1) that does
not hold in PSh (ω).

The main result of the paper is the introduction of the � modality and
the proof of soundness and completeness of the constructed logical relation
entirely in the internal language of Sh (ω1).

Chapter 4: Programming and Reasoning with Guarded Recursion
for Coinductive Types

This chapter is a version of [31] extended with an appendix which provides
proofs of some claims made in the paper and also an extension of the calculus
with sums.

In this paper we consider a simply typed λ-calculus extended with two
modalities, I and � together with the ability to form guarded recursive types.
Guarded recursive types are those where all occurrences of the relevant type
variable appear only under the Imodality.

We develop an operational semantics and prove normalisation. We also
show that the topos PSh (ω) provides an adequate model of the calculus and
we use this fact to get a program logic for reasoning about equality (contex-
tual equivalence) of terms of the calculus. This program logic is the internal
language of the presheaf topos PSh (ω). In particular it contains two modali-
ties � and �. The � is the “later” modality used in step-indexed models and
the � modality is taken almost verbatim from [26] (Chapter 3). Finally, we
show that the calculus is expressive enough to encode Rutten’s behavioural
differential equations [83]. The internal logic and Löb induction can then be
used in place of coinduction in the form of bisimulations to show properties
of defined functions.

My contribution to this paper consists mostly of Sections 4.4 and 4.5 on
the logic and encoding of behavioural differential equations of the paper and
Sections 4.B, 4.D and 4.E of the appendix. The design of the operational
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semantics and the proof of adequacy of the denotational semantics and nor-
malisation was done by my coauthors.

Chapter 5: A Model of Guarded Recursion with Clock
Synchronisation

This paper is a considerably extended version of [28], except that the sec-
tion of the paper on the syntax of the type theory is removed since it is now
superseded by Chapter 7 of this dissertation.

In brief, this paper provides semantic justification for allowing clock syn-
chronisations. In previous work [11, 71] clock synchronisation was disal-
lowed and so the elimination rule for clock quantification had freshness side-
conditions. This was necessary because the models used to justify the calculi
did not support clock substitution in general, but only clock permutation and
clock weakening.

These freshness side-conditions cause problems with the calculi. In par-
ticular, it is not clear that the calculi they considered enjoy a substitution
property: substituting well-typed terms (of correct types) into well-typed
terms yields well-typed terms. Now, it could be that clock synchronisation
is forced upon us if we wish to have some other desirable properties. This is
not the case and the model construction in Chapter 5 shows that we can get
all the properties required of the calculi in previous work [11, 71], but with
a much simpler elimination rule for clock quantification.

The main technical idea of the new model is to replace the previous in-
dexing posets, which were just products of the poset ω, with more refined
ones which essentially build in the ability to identify, or synchronise, clocks.
The crucial new technical property is Lemma 5.2.11 on page 189.

To be precise, this paper does not provide a model of the calculus in
Chapter 7 and the reason for this is that we do not construct a (refinement of
a) split PDTT-structure [51]. However we think that this is only a technical
problem which can be resolved. Indeed, Chapter 6 provides a split PDTT-
structure which can be used to model the subset of the calculus presented in
Chapter 7 without universes. See also Section 1.5 below for more discussion
and a (conjectural at this stage) solution.

Chapter 6: A Model of Guarded Recursion via Generalised
Equilogical Spaces

This chapter consists of a paper [24] which is currently under review.
This paper provides another construction which can be used to model a

subset of the calculus presented in [27]. It is the subset without universes.
The motivation for considering this model is that the construction in [28]
does not give rise to a split model. Moreover, there are, in the model, no
productivity guarantees for functions, e.g., on coinductive streams. To be
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more precise, in the model in [28] the type Z
ω → Z

ω, where Z
ω is the type

of streams encoded using clock quantification, is interpreted as the set of
all functions from streams of integers to streams of integers, which is un-
satisfactory since intuitively, all computable functions on streams should be
continuous: finite amount of output should only depend on finite amount of
input. And all functions definable in the calculus are computable.

The model in Chapter 6 gives such a guarantee. However we currently
do not know how to extend it to model universes, although there might be a
solution following a construction of Beeson [15], which would only construct
closed universes, but would still be enough to formally show consistency of
the type theory. However this belongs to future work.

A nice feature of this construction is that it is relatively simple and di-
rect and we get a split PDTT-structure [51] by construction. Moreover, the
constructions used are quite natural generalisations of constructions used in
realizability models of type theory (see e.g., Jacobs [51]).

Thus, the main idea in this paper is the generalisation of the usual PER
models of dependent type theory (see, for example, Jacobs [51]) to indexed
PER models. Technically, this is phrased as a generalisation of the category
PEqu of partial equilogical spaces [14], but inspection of it shows that one
could take other kinds of realisers as well. The construction is closely related
to Atkey and McBride’s model [11] of a simply typed calculus and can be
seen as a generalisation of their construction to a model of dependent type
theory with guarded recursive types and clock quantifiers.

Chapter 7: Guarded Dependent Type Theory with Coinductive
Types

This chapter consists of a paper [27] with an appendix providing more de-
tailed derivations of examples.

This paper develops an extensional dependent type theory with guarded
recursive types and clock quantification. It uses the model in Chapter 5 as
justification for designing the rules. The paper builds on previous work [11,
71] but extends it by allowing clock synchronisation and, more importantly,
by introducing a new concept of delayed substitutions. These are needed for
working with guarded dependent types which come up, for instance, when
proving properties of guarded streams.

The paper is heavily based on examples which illustrate the need for and
the use of the new rules involving delayed substitutions. We do not prove
any syntactic properties of the type theory like strong or weak normalisation
or decidability of type checking. Indeed, type checking is undecidable, due
to equality reflection, and without restrictions the calculus is not normalis-
ing, since it contains a (guarded) fixed-point combinator. Note however that
the type theory is still consistent. Non-termination is only a source of prob-
lems for a type-checking algorithm and there are several proposals on how
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to restrict fixed-point unfolding to get a decidable typechecking algorithm,
but this is future work.

I contributed to the design of the rules for delayed substitutions, devel-
oping examples which show the need for them and checking that the rules
are validated by the intended model [28].

1.5 Open Problems

This section is by necessity somewhat technical and should only be read after
reading the rest of the dissertation.

Probabilistic programming

The logical relation constructed in Chapter 2 seems to be useful for prov-
ing a number of equivalences, also including equivalences involving proba-
bilistic choice. Of course, because the method is (sound and) complete with
respect to contextual equivalence (and approximation) for any two contextu-
ally equivalent terms e1 and e2 there is a proof that they are also related by
the logical relation.

However there are limitations to the proof method. There are examples of
contextually equivalent programs which we are not able to show equivalent.
Here is a concrete one due to Sangiorgi and Vignudelli [86, Example 5.3].

Let H and K be the terms

H ≡ let x = ref 0 in λ .(M ⊕N )

K ≡ let x = ref 0 in (λ .M)⊕ (λ .N ))

with M and N the terms

M ≡ if !x = 0 then x := 1;true elseΩ

N ≡ if !x = 0 then x := 1;false elseΩ

where ; is sequencing and Ω is some diverging term.
The programs H and K are contextually equivalent (in a call-by-value

language with local state) for quite a subtle reason. Note that M and N share
a local reference cell. They use this cell to ensure that the “user” of H or
K will only get a useful result the first time she runs the programs. This
prevents the usual trick of distinguishing the programs λx.P ⊕Q and (λx.P )⊕
(λx.Q) (in a call-by-value language) from working and indeed Sangiorgi and
Vignudelli [86] show that the programs are equivalent.

With the logical relation in Chapter 2 we are not able to show that H and
K are equivalent.

Remark 1.5.1. This problem is not directly caused by probabilistic choice.
The same example also shows limitations of these logical relations if ⊕ is just
nondeterministic (angelic or demonic) choice. �
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Davide Sangiorgi and Valeria Vignudelli’s environmental bisimulations
can be used to prove this particular equivalence because they are working
directly with relations on distributions (equivalently, measures), whereas our
logical relation only relates terms.

We have also briefly investigated defining logical relations directly on
distributions, since this appeared to be useful, but in the end we did not
have example equivalences that needed the expressiveness. Now we do, so it
might be useful to try to work it out.

Another reason why such an extension would be useful is that if we try
to extend the logical relations method to a language with primitives for con-
tinuous probability distributions, we would like to verify interesting equiv-
alences that are used to rewrite probabilistic programs so that inference is
more efficient. It appears that a lot of the really interesting examples will
require us to work with relations on measures directly, for similar reasons
as the example above. Behind these equivalences there are often deep theo-
rems of probability and statistics and the method should allow us to reduce
checking equivalence of programs to those theorems.

In a quite limited form this is also what happens with the construction
in Chapter 2, see Section 2.D for some examples, but it appears that more is
needed.

Coherence for the model of Chapter 5

As it stands, the construction in Chapter 5 does not give rise to a split PDTT-
structure. Hence it is not immediately clear that the syntax of the type theory
as developed in Chapter 7 can be interpreted while validating all the equa-
tions. Thus to make a stronger argument for consistency of the type theory
we must solve this problem.

Now, coherence problems in interpretations of dependent type theory
have a long history and there are now several different recipes for addressing
the coherence problem [47, 56, 64].

However none of these are directly applicable in our case. Our model is a
family of presheaf categories together with functors between them. Because
each GR (∆) is a presheaf category there is a well-known construction, see
e.g. Hofmann [48] for details, for getting, say, a split closed comprehension
category [51] or a category with families. This is not the problem.

The problem is switching between the different GR (∆) categories. In
more detail, the problem is that the “higher-order” constructions, in par-
ticular universes and (dependent) function spaces reflect the indexing poset
into the objects (to see this recall the definition of exponentials in presheaf
toposes which uses “Kripke” quantification to get functoriality). Thus for
these higher-order constructs we only get preservation of structure up to
(canonical) isomorphism.
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It would not help to list all the solutions that almost work here. Instead,
we only briefly mention construction which seems to give a split model.
However the construction is quite intricate and we have not managed to ver-
ify all the details yet.

Recall that GR is an indexed category and indexed categories are equiv-
alent to (Grothendieck) fibrations. There is a quite well-known construction
for replacing an arbitrary fibration with a split one due to Bénabou [16] (see
also [51, Corollary 5.2.5]). Of course our fibration is already split (that is, GR
is already a functor, not only a pseudofunctor), but its products are not split.
However the equivalent split fibration obtained by Bénabou’s construction
appears to give us more freedom to define all the constructions in such a way
that they are preserved by clock substitution, i.e., are split as well. The de-
tails, however, are quite involved due to several different levels of indexing
and thus we leave the problem of coherence for future work.

Finally, using Benabou’s construction does seem less than ideal. This is a
construction applicable to an arbitrary fibration, whereas ours is a very par-
ticular one, which should hopefully mean that a simpler and more principled
solution is available. However we have have not found it yet.

Guarded type theory

The type theory presented in Chapter 7 is good as an extensional type theory
and as an internal language of the particular model, but it currently lacks
other desirable properties a type theory should have. It appears that the
type theory is useful for working with coinductive types in a modular way.
However, one of the original motivations for developing the type theory [22]
with the I modality was to be able to define guarded recursive types with
negative occurrences of the relevant type variable. This would allow us to
define a type that is a solution to the domain equation such as (1.8) (page 12).

In the calculus as presented in Chapter 7 defining such a type is possible,
however we have not yet investigated if the type theory is sufficient to use the
defined type in the desired applications. If it is, then this application would
be outside of the scope of other approaches to ensuring guardedness in a mod-
ular way, like sized-types [1, 50]. These only allow definitions of recursive
types with strictly positive occurrences of the relevant type variable.

Svendsen and Birkedal [91] have used the internal language of the topos
PSh (ω) to construct a model of their separation logic. This gives some evi-
dence that using the type theory in Chapter 7 a similar development might be
possible. However there are some important differences. Chief among them
is they use higher-order logic as the language for constructing the model and
using the � modality of the logic seems to be substantially simpler than us-
ing the I modality of the type theory. The main question with regards to
applications is whether the delayed substitutions and the rules for them in-
troduced in Chapter 7 are sufficient.
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The problem with trying to see whether this is the case is that the exam-
ples are complex. Verifying that the terms, which grow quite large, type-
check by hand is tedious and error-prone. For this reason it would be quite
useful to have a prototype type-checker, but this runs into the current prob-
lems of undecidability of type-checking of the calculus presented in Chap-
ter 7. Hans Bugge Grathwohl and Andrea Vezzosi have made a prototype im-
plementation of a version of the type theory presented in Chapter 7 and the
type-checker they have implemented is sufficient to type-check most exam-
ples presented there. However the implemented type theory is not precisely
the same as the one presented and its semantics is currently not entirely un-
derstood.

1.6 List of Publications

During my PhD studies I have coauthored eight articles, seven of which have
either been published or accepted for publication and one of which is cur-
rently under review, and a set of tutorial notes on categorical logic.

Articles included in the dissertation

Revised and in some cases extended versions of the following articles are
included in the dissertation.

• Step-indexed Logical Relations for Probability
FoSSaCS 2015 [25]

Joint work with Lars Birkedal.

• A Model of Countable Nondeterminism in Guarded Type Theory
RTA-TLCA 2014 [26]

Joint work with Lars Birkedal and Marino Miculan.

• Programming and Reasoning with Guarded Recursion for Coinductive
Types

FoSSaCS 2015 [31]
Joint work with Lars Birkedal, Ranald Clouston, and Hans Bugge Grath-
wohl.

• A Model of Guarded Recursion with Clock Synchronisation
MFPS 2015 [28]

Joint work with Rasmus Ejlers Møgelberg.

• A Model of Guarded Recursion via Generalised Equilogical Spaces
Submitted (currently under review)

Joint work with Lars Birkedal.
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• Guarded Dependent Type Theory with Coinductive Types
FoSSaCS 2016 [27]

Joint work with Lars Birkedal, Ranald Clouston, Hans Bugge Grath-
wohl, and Rasmus Ejlers Møgelberg.

Articles not included in the dissertation

The following articles are not included in the dissertation because my con-
tributions to them are minor.

• Step-Indexed Relational Reasoning for Countable Nondeterminism
Logical Methods in Computer Science [23]

Joint work with Lars Birkedal and Jan Schwinghammer.

• ModuRes: a Coq Library for Modular Reasoning about Concurrent Hi-
gher-Order Imperative Programming Languages

ITP 2015 [89]
Joint work with Lars Birkedal and Filip Sieczkowski.

Tutorial notes

I wrote the following tutorial notes together with Lars Birkedal.

• A Taste of Categorical Logic - Tutorial Notes

They are available online at

http://cs.au.dk/˜abizjak/tutorials/1-categorical-logic/.

1.7 Notations

The ends of Theorem, Lemma, Proposition and Corollary environments are
marked with the symbol ♦. The ends of Definition, Example and Remark
environments are marked with the symbol �. The ends of proofs are marked
with QED.

We use N for the set of natural numbers, Z for the set of integers ans R

for the set of real numbers.
Following is the list of some common notation that are used throughout

the dissertation.

• f [A] image of the set A under the function f .

• imf is the range of the function f , i.e., the image of the domain.

• f −1 [A] is the preimage of the set A under the function f .

• A ⊆fin B means that the set A is a finite subset of the set B.

http://cs.au.dk/~abizjak/tutorials/1-categorical-logic/
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• BA and A⇒ B are used for exponentials (in the relevant category).

• A→fin B is the set of finite maps from the set A to the set B, i.e., the set⊔
D⊆finA

BD

where
⊔

is the disjoint union.

• PSh (C) is the category of presheaves on the small category C.

• Sh (P ) for a poset P is the category of sheaves on P considered as a
topological space with the (downwards) Alexandrov topology: opens
are downwards closed sets.

• 1 is the terminal object of the relevant category.

• 0 is the initial object of the relevant category.

• ! is the unique morphism into the terminal object or the unique mor-
phism out of the initial object.

• ? is the unique element of the chosen terminal object in the category
Set.

• f n for a morphism f : X→ X and natural number n is the n-th iteration
of f : f 0 is the identity function and f n+1 = f ◦ f n.

• ⊥ and > are, respectively, the least and greatest element of the given
poset.

• P (X) is the power set of the set X and more generally, the power object
of the object X in a topos.
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Chapter 2

Step-Indexed Logical Relations
for Probability

This chapter is a revised version of

Aleš Bizjak and Lars Birkedal.

Step-indexed logical relations for probability.

In Andrew Pitts, editor, Foundations of Software Science and Com-
putation Structures, Lecture Notes in Computer Science, pages 279–
294. Springer-VS, 2015.

Abstract

It is well-known that constructing models of higher-order probabilistic
programming languages is challenging. We show how to construct step-
indexed logical relations for a probabilistic extension of a higher-order
programming language with impredicative polymorphism and recur-
sive types. We show that the resulting logical relation is sound and
complete with respect to the contextual preorder and, moreover, that it
is convenient for reasoning about concrete program equivalences. Fi-
nally, we extend the language with dynamically allocated first-order
references and show how to extend the logical relation to this language.
We show that the resulting relation remains useful for reasoning about
examples involving both state and probabilistic choice.

2.1 Introduction

It is well known that it is challenging to develop techniques for reason-
ing about programs written in probabilistic higher-order programming lan-
guages. A probabilistic program evaluates to a distribution of values, as
opposed to a set of values in the case of nondeterminism or a single value
in the case of deterministic computation. Probability distributions form a

35
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monad. This observation has been used as a basis for several denotational
domain-theoretic models of probabilistic languages and also as a guide for
designing probabilistic languages with monadic types [54, 81, 85]. Game
semantics has also been used to give models of probabilistic programming
languages [37, 41] and a fully abstract model using coherence spaces for PCF
with probabilistic choice was recently presented [42].

The majority of models of probabilistic programming languages have
been developed using denotational semantics. However, Johann et.al. [52]
developed operationally-based logical relations for a polymorphic program-
ming language with effects. Two of the effects they considered were prob-
abilistic choice and global ground store. However, as pointed out by the
authors [52], extending their construction to local store and, in particular,
higher-order local store, is likely to be problematic. Recently, operationally-
based bisimulation techniques have been extended to probabilistic exten-
sions of PCF [35, 36]. The operational semantics of probabilistic higher-order
programming languages has been investigated in [58].

Step-indexed logical relations [5, 8] have proved to be a useful method
for proving contextual approximation and equivalence for programming lan-
guages with a wide range of features, including computational effects.

In this paper we show how to extend the method of step-indexed log-
ical relations to reason about contextual approximation and equivalence of
probabilistic higher-order programs. To define the logical relation we employ
biorthogonality [76, 79] and step-indexing. Biorthogonality is used to ensure
completeness of the logical relation with respect to contextual equivalence,
but it also makes it possible to keep the value relations simple, see Figure 2.1.
Moreover, the definition using biorthogonality makes it possible to “exter-
nalise” the reasoning in many cases when proving example equivalences. By
this we mean that the reasoning reduces to algebraic manipulations of prob-
abilities. This way, the quantitative aspects do not complicate the reasoning
much, compared to the usual reasoning with step-indexed logical relations.
To define the biorthogonal lifting we use two notions of observation; the ter-
mination probability and its stratified version approximating it. We define
these and prove the required properties in Section 2.3.

We develop our step-indexed logical relations for the call-by-value lan-
guage Fµ,⊕. This is system F with recursive types, extended with a single
probabilistic choice primitive rand . The primitive rand takes a natural num-
ber n and reduces with uniform probability to one of 1,2, . . . ,n. Thus randn
represents the uniform probability distribution on the set {1,2, . . . ,n}. We
choose to add rand instead of just a single coin flip primitive to make the
examples easier to write.

To show that the model is useful we use it to prove some example equiv-
alences in Section 2.5. We show two examples based on parametricity. In
the first example, we characterise elements of the universal type ∀α.α → α.
In a deterministic language, and even in a language with nondeterminis-
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tic choice, the only interesting element of this type is the identity func-
tion. However, since in a probabilistic language we not only observe the
end result, but also the likelihood with which it is returned, it turns out that
there are many more elements. Concretely, we show that the elements of
the type ∀α.α→ α that are of the form Λα.λx.e, correspond precisely to left-
computable real numbers in the interval [0,1]. In the second example we show
a free theorem involving functions on lists. We show additional equivalences
in Section 2.D in the appendix, including the correctness of von Neumann’s
procedure for generating a fair sequence of coin tosses from an unfair coin,
and some equivalences from the recent papers using bisimulations [35, 36].

We add dynamically allocated references to the language and extend the
logical relation to the new language in Section 2.6. For simplicity we only
sketch how to extend the construction with first-order state. This already
suggests that an extension with general references can be done in the usual
way for step-indexed logical relations. We conclude the section by proving
a representation independence result involving both state and probabilistic
choice.

2.2 The Language Fµ,⊕

The language is a standard pure functional language with recursive, univer-
sal and existential types with an additional choice primitive rand . The base
types include the type of natural numbers nat with some primitive opera-
tions. The grammar of terms e is

e ::= x | 〈〉 | rande | n | if1 e then e1 else e2 | Pe | Se | 〈e1, e2〉 | proji e
| λx.e | e1 e2 | inl e | inr e | match (e,x1.e1,x2.e2) |Λ.e | e[]
| packe | unpack e1 as x in e2 | folde | unfolde

We write n for the numeral representing the natural number n and S and P
are the successor and predecessor functions, respectively. For convenience,
numerals start at 1. Given a numeral n, the term randn evaluates to one
of the numerals 1, . . . ,n with uniform probability. There are no types in the
syntax of terms, e.g., instead of Λα.e and eτ we have Λ.e and e[]. This is for
convenience only.

We write α,β, . . . for type variables and x,y, . . . for term variables. The nota-
tion τ[~τ/ ~α] denotes the simultaneous capture-avoiding substitution of types
~τ for the free type variables ~α in the type τ ; e[~v/~x] denotes simultaneous
capture-avoiding substitution of values ~v for the free term variables ~x in the
term e.

We write Stk for the set of evaluation contexts given by the call-by-value
reduction strategy. Given two evaluation contexts E,E′ we define their com-
position E ◦ E′ by induction on E in the natural way. Given an evaluation
context E and expression e we write E[e] for the term obtained by plugging
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e into E. For any two evaluation contexts E and E′ and a term e we have
E[E′[e]] = (E ◦E′)[e].

For a type variable context ∆, the judgement ∆ ` τ expresses that the free
type variables in τ are included in ∆. The typing judgements are entirely
standard with the addition of the typing of rand which is given by the rule

∆ | Γ ` e : nat

∆ | Γ ` rand e : nat
.

The complete set of typing rules are in Figure 2.4 on page 57 in the appendix.
We write T(∆) for the set of types well-formed in context ∆, and T for the set
of closed types τ . We write Val (τ) and Tm (τ) for the sets of closed values and
terms of type τ , respectively. We write Val and Tm for the set of all1 closed
values and closed terms, respectively. Stk (τ) denotes the set of τ-accepting
evaluation contexts, i.e., evaluation contexts E, such that given any closed
term e of type τ , E[e] is a typeable term. Stk denotes the set of all evaluation
contexts.

For a typing context Γ = x1:τ1, . . . ,xn:τn with τ1, . . . , τn ∈ T, let Subst(Γ )
denote the set of type-respecting value substitutions, i.e. for all i, γ(xi) ∈
Val (τi). In particular, if ∆ | Γ ` e : τ then ∅ | ∅ ` eγ : τδ for any δ ∈ T∆ and
γ ∈ Subst(Γ δ), and the type system satisfies standard properties of progress
and preservation and a canonical forms lemma.

The operational semantics of the language is a standard call-by-value se-
mantics but weighted with p ∈ [0,1] which denotes the likelihood of that
reduction. We write

p
; for the one-step reduction relation. All the usual β

reductions have weight equal to 1 and the reduction from randn is

randn
1
n; k for k ∈ {1,2, . . . ,n}.

The rest of the rules are given in Figure 2.5 on page 58 in the appendix. The
operational semantics thus gives rise to a Markov chain with closed terms as
states. In particular for each term e we have

∑
e′ |e p;e′

p ≤ 1.

2.3 Observations and Biorthogonality

We will use biorthogonality to define the logical relation. This section pro-
vides the necessary observation predicates used in the definition of the bior-
thogonal lifting of value relations to expression relations. Because of the use
of biorthogonality the value relations (see Figure 2.1 on page 45) remain as
simple as for a language without probabilistic choice. The new quantitative
aspects only appear in the definition of the biorthogonal lifting (>>-closure)
defined in Section 2.4. Two kinds of observations are used. The probability of

1In particular, we do not require them to be typeable.
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termination, P⇓ (e), which is the actual probability that e terminates, and its
approximation, the stratified termination probability P⇓k (e), where k ∈N de-
notes, intuitively, the number of computation steps. The stratified termina-
tion probability provides the link between steps in the operational semantics
and the indexing in the definition of the interpretation of types.

The probability of termination, P⇓ (·), is a function of type Tm→I where
I is the unit interval [0,1]. Since I is a pointedω-cpo for the usual order, so is
the space of all functions Tm→ I with pointwise ordering. We define P⇓ (·)
as a fixed point of the continuous function Φ on this ω-cpo: Let F = Tm→I
and define Φ : F → F as

Φ(f )(e) =


1 if e ∈Val∑
e
p
;e′

p · f (e′) otherwise

Note that if e is stuck then Φ(f )(e) = 0 since the empty sum is by definition
0.

The function Φ is monotone and preserves suprema of ω-chains. The
proof is straightforward and can be found in Section 2.A in the appendix.
Thus Φ has a least fixed point in F and we denote this fixed point by P⇓ (·),
i.e., P⇓ (e) = supn∈ωΦ

n(⊥)(e).
To define the stratified observations we need the notion of a path. Given

terms e and e′ a path π from e to e′, written π : e ;∗ e′, is a sequence
e
p1; e1

p2; e2
p3; · · · pn; e′. The weight W (π) of a path π is the product of the

weights of reductions in π. We write R for the set of all paths and · for their Note that the fact that the
weight of the path is the
product builds in the
assumption that successive
probabilistic choices are
independent.

concatenation (when defined). For a non-empty path π ∈R we write ` (π) for
its last expression.

We call reductions of the form unfold (foldv) 1; v unfold-fold reductions

and reductions of the form randn
1
n; k choice reductions. If none of the reduc-

tions in a path π is a choice reduction we call π choice-free and similarly if
none of the reductions in π is an unfold-fold reductions we call π unfold-fold
free.

We define the following types of multi-step reductions which we use in
the definition of the logical relation.

• e
cf

=⇒ e′ if there is a choice-free path from e to e′

• e
uff

=⇒ e′ if there is an unfold-fold free path from e to e′.

• e
cuff
=⇒ e′ if e

cf
=⇒ e′ and e

uff
=⇒ e′.

The following useful lemma states that all but choice reductions preserve
the probability of termination. As a consequence, we will see that all but
choice reductions preserve equivalence.
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Lemma 2.3.1. Let e,e′ ∈ Tm and e
cf

=⇒ e′. Then P⇓ (e) = P⇓ (e′). ♦

The proof proceeds on the length of the reduction path with the strength-
ened induction hypothesis stating that the probabilities of termination of all
elements on the path are the same. To define the stratified probability of
termination that approximates P⇓ (·) we need an auxiliary notion.

Definition 2.3.2. For a closed expression e ∈ Tm we define Red (e) as the
(unique) set of paths containing exactly one unfold-fold or choice reduction
and ending with such a reduction. More precisely, we define the function
Red : Tm→P (R) as the least function satisfying

Red (e) =


{e 1; e′} if e = E[unfold (foldv)]

{e p
; E[k] | p = 1

n , k ∈ {1,2, . . . ,n}} if e = E[randn]{
(e 1; e′) ·π

∣∣∣∣ π ∈ Red (e′)
}

if e 1; e′ and e
cuff
=⇒ e′

∅ otherwise

where we order the power set P (R) by subset inclusion. �

Using Red (·) we define a monotone map Ψ : F → F that preserves ω-
chains.

Ψ (f )(e) =


1 if ∃v ∈Val, e

cuff
=⇒ v∑

π∈Red(e)

W (π) · f (` (π)) otherwise

and then defineP⇓k (e) = Ψ k(⊥)(e). The intended meaning ofP⇓k (e) is the prob-
ability that e terminates within k unfold-fold and choice reductions. Since Ψ
is monotone we have that P⇓k (e) ≤ P⇓k+1 (e) for any k and e.

The following lemma is the reason for counting only certain reductions,
cf. [39]. It allows us to stay at the same step-index even when taking steps in
the operational semantics. As a consequence we will get a more extensional
logical relation.

Lemma 2.3.3. Let e,e′ ∈ Tm. If e
cuff
=⇒ e′ then for all k, P⇓k (e) = P⇓k (e′). ♦

Proof. When k is 0 the result is immediate. So assume k > 0. We need to
distinguish two cases.

• If there exists v′ ∈Val such that e′
cuff
=⇒ v′ then we also have e

cuff
=⇒ v′ and

we are done.
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• If not, then we need to inspect the definition of Red (e) and Red (e′). It
is easy to see that any path π ∈ Red (e′) corresponds to a unique path
π′ · π in Red (e). It is similarly easy to see that W (π) = W (π′ ·π) and
that ` (π) = ` (π′ ·π). Thus we have that P⇓k (e) = P⇓k (e′).

QED

The following is immediate from the definition of the chain
{
P
⇓
k (e)

}∞
k=0

and the fact that randn reduces with uniform probability.

Lemma 2.3.4. Let e be a closed term. If e 1; e′ and the reduction is an unfold-
fold reduction then P⇓k+1 (e) = P⇓k (e′). If the reduction from e is a choice reduction,

then P⇓k+1 (e) = 1
|Red(e)|

∑
π∈Red(e)P

⇓
k (` (π)). ♦

The following proposition is needed to prove adequacy of the logical re-
lation with respect to contextual equivalence. It is analogous to the property
used to prove adequacy of step-indexed logical relations for deterministic
and nondeterministic languages. Consider the case of may-equivalence. To
prove adequacy in this case (cf. [23, Theorem 4.8]) we use the fact that if e
may-terminates, then there is a natural number n such that e terminates in n
steps. This property does not hold in the probabilistic case, but the property
analogous to it that is sufficient to prove adequacy still holds.

Proposition 2.3.5. For each e ∈ Tm we have P⇓ (e) ≤ supk∈ω
(
P
⇓
k (e)

)
. ♦

Proof. We use Scott induction. Let S be the set

S =
{
f ∈ F

∣∣∣∣∣∣ ∀e, f (e) ≤ sup
k∈ω

(
P
⇓
k (e)

)}
It is easy to see that S is closed under limits of ω-chains and that ⊥ ∈ S .
The last property to check is that S is closed under Φ . Let f ∈ S and e an
expression. We have

Φ(f )(e) =


1 if e ∈Val∑
e
p
;e′

p · f (e′) otherwise

and we consider 4 cases.

• e ∈ Val. We always have e
cuff
=⇒ e and so we have that for any k > 0,

P
⇓
k (e) = 1 which is the top element.

• e
p
; e′ and the reduction is not unfold-fold or choice. Then we use

Lemma 2.3.3 to get P⇓k (e) = P
⇓
k (e′) for all k. Similarly we have that

Φ(f )(e) = f (e′) from the definition of Φ . Thus we can use the assump-
tion that f ∈ S .
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• e
1; e′ and the reduction is unfold-fold. This follows directly from the

definition of Red (·), Ψ and the assumption that f ∈ S .

• The reduction from e is a choice reduction. Suppose e reduces to the
terms e1, e2, . . . , en. Then we know from the operational semantics that
the weights are all 1

n . We get

Φ(f )(e) =
n∑
i=1

1
n
f (ei) and P

⇓
k+1 (e) =

n∑
i=1

1
n
P
⇓
k (ei) . (2.1)

Using the fact that P⇓k (ei) is an increasing chain in k for each ei we have

sup
k∈ω

(
P
⇓
k (e)

)
=

n∑
i=1

1
n

sup
k∈ω

(
P
⇓
k (ei)

)
(2.2)

By assumption f (ei) ≤ supk∈ω
(
P
⇓
k (ei)

)
for all i ∈ {1,2, . . . ,n} which con-

cludes the proof using (2.1) and (2.2). QED

2.4 Logical, CIU and Contextual Approximation
Relations

The contextual and CIU (closed instantiations of uses [78]) approximations
are defined in a way analogous to the one for deterministic programming
languages. We require some auxiliary notions. A type-indexed relation R is
a set of tuples (∆,Γ , e, e′ , τ) such that ∆ ` Γ and ∆ ` τ and ∆ | Γ ` e : τ and
∆ | Γ ` e′ : τ . We write ∆ | Γ ` eR e′ : τ for (∆,Γ , e, e′ , τ) ∈ R.

Definition 2.4.1 (Precongruence). A type-indexed relation R is reflexive if
∆ | Γ ` e : τ implies ∆ | Γ ` e R e : τ . It is transitive if ∆ | Γ ` e R e′ : τ and
∆ | Γ ` e′ R e′′ : τ implies ∆ | Γ ` e R e′′ : τ . It is compatible if it is closed under
the term forming rules, e.g., 2

∆ | Γ ,x:τ1 ` eR e′ : τ2

∆ | Γ ` λx.eR λx.e′ : τ1→ τ2

∆ | Γ ` eR e′ : nat
∆ | Γ ` randeR rande′ : nat

A precongruence is a reflexive, transitive and compatible type-indexed rela-
tion. �

Finally, to relate the operational semantics with the relation we have the
notion of adequacy. In the deterministic case, a relation R is adequate if
when eR e′ are two related closed terms, then if e terminates so does e′. Here
we need to compare probabilities of termination instead, since these are our
observations.

2We only show a few rules, the rest are analogous and can be found in Figure 2.6 on
page 77 in the appendix.
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Definition 2.4.2. A type-indexed relation R is adequate if for all e,e′ such
that ∅ | ∅ ` eR e′ : τ we have P⇓ (e) ≤ P⇓ (e′). �

The contextual approximation relation, written∆ | Γ ` e .ctx e′ : τ , is defined
as the largest adequate precongruence and the CIU approximation relation, writ-
ten ∆ | Γ ` e .CIU e′ : τ , is defined using evaluation contexts in the usual way,
e.g. [78], using P⇓ (·) for observations. The fact that the largest adequate pre-
congruence exists is proved as in [78].

Logical relation

We now define the step-indexed logical relation. We present the construction
in the elementary way with explicit indexing instead of using a logic with
guarded recursion as in [39]. We do this partly to remain self-contained and
partly to avoid issues with validity of manipulations of finite and infinite
sums in an constructive logic. It is likely that with sufficient all theorems
and examples can be constructively proved, and so would be valid in the
internal logic of, e.g., the topos of trees, but this would detract needlessly
from the simplicity of the construction.

Interpretations of types will be defined as decreasing sequences of rela-
tions on typeable values. For closed types τ and σ we define the sets VRel (τ,σ ),
SRel (τ,σ ) and TRel (τ,σ ) to be the sets of decreasing sequences of relations
on typeable values, evaluation contexts and expressions respectively. The
types τ and σ denote the types of the left-hand side and the right-hand side
respectively, i.e. if (v,u) ∈ ϕ(n) for ϕ ∈ VRel (τ,σ ) then v has type τ and u
has type σ . The order relation ≤ on these sets is defined pointwise, e.g. for
ϕ,ψ ∈ VRel (τ,σ ) we write ϕ ≤ ψ if ∀n ∈ N,ϕ(n) ⊆ ψ(n). We implicitly use
the inclusion from VRel (τ,σ ) to TRel (τ,σ ). The reason for having relations
on values and terms of different types on the left and right-hand sides is so
we are able to prove parametricity properties in Section 2.5.

We define maps ·>τ,σ : VRel (τ,σ ) → SRel (τ,σ ) and ·⊥τ,σ : SRel (τ,σ ) →
TRel (τ,σ ). We usually omit the type indices when they can be inferred from
the context. The maps are defined as follows

r>τ,σ (n) =
{
(E,E′)

∣∣∣∣ ∀k ≤ n,∀(v,v′) ∈ r(k),P⇓k (E[v]) ≤ P⇓ (E′[v′])
}

and

r⊥τ,σ (n) =
{
(e,e′)

∣∣∣∣ ∀k ≤ n,∀(E,E′) ∈ r(k),P⇓k (E[e]) ≤ P⇓ (E′[e′])
}
.

Note that we only count steps evaluating the left term in defining r> and r⊥.
We write r>> = r>⊥ for their composition from VRel (τ,σ ) to TRel (τ,σ ). The
function ·> is order-reversing and ·>> is order-preserving and inflationary.

Lemma 2.4.3. Let τ,σ be closed types and r, s ∈ VRel (τ,σ ). Then r ≤ r>> and if
r ≤ s then s> ≤ r> and r>> ≤ s>>. ♦
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For a type-variable context ∆ we define VRel (∆) using VRel (·, ·) as

VRel (∆) =
{
(ϕ1,ϕ2,ϕr )

∣∣∣ ϕ1,ϕ2 ∈ T∆,∀α ∈ ∆,ϕr(α) ∈VRel (ϕ1(α),ϕ2(α))
}

where the first two components give syntactic types for the left and right
hand sides of the relation and the third component is a relation between
those types.

The interpretation of types, ~· ` ·� is by induction on the judgement ∆ ` τ
(this judgement is defined precisely in Figure 2.3 on page 56 in the ap-
pendix). For a judgement ∆ ` τ and ϕ ∈VRel (∆) we have

~∆ ` τ� (ϕ) ∈VRel (ϕ1(τ),ϕ2(τ))

where the ϕ1 and ϕ2 are the first two components of ϕ and ϕ1(τ) denotes
substitution. Moreover ~·� is non-expansive in the sense that ~∆ ` τ� (ϕ)(n)
can depend only on the values of ϕr(α)(k) for k ≤ n, see [21] for this metric
view of step-indexing. The interpretation of types is defined in Figure 2.1.
Observe that the value relations are as simple as for a language without prob-
abilistic choice. The crucial difference is hidden in the >>-closure of value
relations.

Context extension lemmas To prove soundness and completeness we need
lemmas stating how extending evaluation contexts preserves relatedness. We
only show the case for rand . The rest are similarly simple.

Lemma 2.4.4. Let n ∈ N. If (E,E′) ∈ ~∆ ` nat� (ϕ)>(n) are related evaluation
contexts then (E ◦ (rand []),E′ ◦ (rand [])) ∈ ~∆ ` nat� (ϕ)>(n). ♦

Proof. Let n ∈N and (v,v′) ∈ ~∆ ` τ� (ϕ)(n). By construction we have v = v′ =
m for some m ∈N, m ≥ 1. Let k ≤ n. If k = 0 the result is immediate, so as-
sume k = ` + 1. Using Lemma 2.3.4 we have P⇓k (E[randm]) = 1

m

∑m
i=1P

⇓
` (E[i])

and using the assumption (E,E′) ∈ ~∆ ` nat� (ϕ)>(n), the fact that k ≤ n and
monotonicity in the step-index the latter term is less than 1

m

∑m
i=1P

⇓ (E′[i])
which by definition of P⇓ (·) is equal to P⇓ (E′[randm]). QED

We define the logical approximation relation for open terms given the
interpretations of types in Figure 2.1. We define ∆ | Γ ` e .log e′ : τ to mean

∀n ∈N,∀ϕ ∈VRel (∆) ,∀(γ,γ ′) ∈ ~∆ ` Γ � (ϕ)(n), (eγ,e′γ) ∈ ~∆ ` τ�ϕ>>(n).

Here ~∆ ` Γ � is the obvious extension of interpretation of types to interpre-
tation of contexts which relates substitutions, mapping variables to related
values. We have

Proposition 2.4.5 (Fundamental property). The logical approximation relation
.log is compatible. In particular it is reflexive. ♦
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~∆ ` nat� (ϕ)(n) = {(k,k)
∣∣∣ k ∈N, k > 0}

~∆ ` τ × σ� (ϕ)(n) =
{

(〈v,u〉,〈v′ ,u′〉)
∣∣∣∣∣ (v,v′) ∈ ~∆ ` τ� (ϕ)(n),

(u,u′) ∈ ~∆ ` σ� (ϕ)(n)

}
~∆ ` τ +σ� (ϕ)(n) =

{
(inl v,inl v′)

∣∣∣ (v,v′) ∈ ~∆ ` τ� (ϕ)(n)
}

∪
{
(inr v,inr v′)

∣∣∣ (v,v′) ∈ ~∆ ` σ� (ϕ)(n)
}

~∆ ` τ→ σ� (ϕ)(n) =

 (λx.e,λy.e′) | ∀j ≤ n,∀(v,v′) ∈ ~∆ ` τ� (ϕ)(j),
((λx.e)v, (λy.e′)v′) ∈ ~∆ ` σ� (ϕ)>>(j)


~∆ ` ∀α.τ� (ϕ)(n) =

 (Λ.e,Λ.e′) | ∀σ,σ ′ ∈ T,∀r ∈VRel (σ,σ ′) ,
(e,e′) ∈ ~∆,α ` τ� (ϕ [α 7→ r])>>(n)


~∆ ` ∃α.τ� (ϕ)(n) =

 (packv,packv′) | ∃σ,σ ′ ∈ T,∃r ∈VRel (σ,σ ′) ,
(v,v′) ∈ ~∆,α ` τ� (ϕ [α 7→ r]) (n)


~∆ ` µα.τ� (ϕ)(0) = Val (ϕ1(µα.τ))×Val (ϕ2(µα.τ))

~∆ ` µα.τ� (ϕ)(n+ 1) =

 (foldv,foldv′) |
(v,v′) ∈ ~∆,α ` τ� (ϕ [α 7→ ~∆ ` µα.τ� (ϕ)]) (n)


Figure 2.1: Interpretation of types.

Proof. The proof is a simple consequence of the context extension lemmas.
We show the case for rand . We have to show that ∆ | Γ ` e .log e′ : nat im-
plies ∆ | Γ ` rand e .log rand e′ : nat. Let n ∈ N, ϕ ∈ VRel (∆) and (γ,γ ′) ∈
~∆ ` Γ � (ϕ)(n). Let f = eγ and f ′ = e′γ ′. Then our assumption gives us

(f , f ′) ∈ ~∆ ` nat� (ϕ)>>(n) (2.3)

and we are to show

(rand f ,rand f ′) ∈ ~∆ ` nat� (ϕ)>>(n).

Let j ≤ n and (E,E′) ∈ ~∆ ` nat� (ϕ)>(j). From Lemma 2.4.4 we have

(E ◦ (rand []),E′ ◦ (rand [])) ∈ ~∆ ` nat� (ϕ)>(j)

which suffices by the definition of the orthogonality relation and assumption
(2.3). QED

We now want to relate logical, CIU and contextual approximation rela-
tions.
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Corollary 2.4.6. Logical approximation relation .log is adequate. ♦

Proof. Assume ∅ | ∅ ` e .log e′ : τ . We are to show that P⇓ (e) ≤ P⇓ (e′).
Straight from the definition we have ∀n ∈N, (e,e′) ∈ ~∅ ` τ�>>(n). The empty
evaluation context is always related to itself (at any type). This implies

∀n ∈N,P⇓n (e) ≤ P⇓ (e′)

which further implies (since the right-hand side is independent of n) that

sup
n∈ω

(
P
⇓
n (e)

)
≤ P⇓ (e′) .

Using Proposition 2.3.5 we thus have

P⇓ (e) ≤ sup
n∈ω

(
P
⇓
n (e)

)
≤ P⇓ (e′)

concluding the proof. QED

We now have that the logical relation is adequate and compatible. This
does not immediately imply that it is contained in the contextual approxi-
mation relation, since we do not know that it is transitive. However we have
the following lemma where by transitive closure we mean that for each ∆, Γ
and τ we take the transitive closure of the relation {(e,e′) | ∆ | Γ ` e .log e′ : τ}.
This is another type-indexed relation.

Lemma 2.4.7. The transitive closure of .log is compatible and adequate. ♦

Proof. Transitive closure of an adequate relation is adequate. Similarly the
transitive closure of a compatible and reflexive relation (in the sense of Defi-
nition 2.4.1) is again compatible (and reflexive). QED

To relate the logical relation to contextual and CIU approximations we
first have that the composition of logical and CIU approximations is included
in the logical approximation relation.

Corollary 2.4.8. If ∆ | Γ ` e .log e′ : τ and ∆ | Γ ` e′ .CIU e′′ : τ then ∆ | Γ ` e .log

e′′ : τ . ♦

This follows directly from the definition of the logical relation using bior-
thogonality. This corollary in turn implies, together with Proposition 2.4.5
and the fact that all compatible relations are in particular reflexive, that CIU
approximation relation is contained in the logical relation.

Corollary 2.4.9. If ∆ | Γ ` e .CIU e′ : τ then ∆ | Γ ` e .log e′ : τ . ♦

Finally we have the main theorem.
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Theorem 2.4.10 (CIU theorem). The relations .log, .CIU and .ctx coincide. ♦

Proof. It is standard (e.g. [78]) that .ctx is included in .CIU. To see that .log is
included in .ctx we have by Lemma 2.4.7 that the transitive closure of .log is
an adequate precongruence, thus included in .ctx. And .log is included in the
transitive closure of .log. Corollary 2.4.8 completes the cycle of inclusions.

QED

Using the logical relation and Theorem 2.4.10 we can prove some ex-
tensionality properties. The proofs are standard and can be found in the
Section 2.A in the appendix.

Lemma 2.4.11 (Functional extensionality for values). Suppose τ,σ ∈ T(∆) and
let f and f ′ be two values of type τ→ σ in context ∆ | Γ . If for all u ∈Val (τ) we
have

∆ | Γ ` f u .ctx f ′ u : σ

then

∆ | Γ ` f .ctx f ′ : τ→ σ.

♦

The extensionality for expressions, as opposed to only values, of function
type does not hold in general due to the presence of choice reductions. See
Remark 2.5.2 for an example. We also have extensionality for values of uni-
versal types.

Lemma 2.4.12 (Extensionality for the universal type). Let τ ∈ T(∆,α) be a
type. Let f , f ′ be two values of type ∀α.τ in context ∆ | Γ . If for all closed types σ
we have

∆ | Γ ` f [] .ctx f ′[] : τ[σ/α]

then

∆ | Γ ` f .ctx f ′ : ∀α.τ.

♦

2.5 Examples

We now use our logical relation to prove some example equivalences. We
show two examples involving polymorphism. More examples can be found
in Section 2.D in the appendix. In particular we show the correctness of von
Neumann’s procedure for generating a fair sequence of coin tosses from an
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unfair coin. That example in particular shows how the use of biorthogonality
allows us to “externalise” the reasoning to arithmetic manipulations.

We first define fix of type

∀α,β.((α→β)→(α→β))→ (α→β)

be the term

Λ.Λ.λf .λz.δf (foldδf )z

where δf is the term

λy.let y′ = unfoldy in f (λx.y′ y x).

This is a call-by-value fixed-point combinator. We also write e1 ⊕ e2 for the
term if1 rand2 then e1 else e2. Note that the choice is made before evaluat-
ing the terms e1 and e2.

We characterise inhabitants of a polymorphic type and show a free the-
orem. For the former, we need to know which real numbers can be prob-
abilities of termination of programs. Recall that a real number r is left-
computable if there exists a computable increasing (not necessarily strictly)
sequence {qn}n∈ω of rational numbers such that r = supn∈ω qn. To not de-
tract from the main development we prove the following proposition in Sec-
tion 2.B in the appendix.

Proposition 2.5.1. For any expression e, P⇓ (e) is a left-computable real number
and for any left-computable real number r in the interval [0,1] there is a closed
term er of type 1→ 1 such that P⇓ (er 〈〉) = r. ♦

Inhabitants of the type ∀α.α→ α

In this section we use further syntactic sugar for sequencing. When e,e′ ∈ Tm
are closed terms we write e;e′ for (λ .e′)e, i.e. first run e, ignore the result
and then run e′. We will need the property that for all terms e,e′ ∈ Tm,
P⇓ (e;e′) = P⇓ (e) ·P⇓ (e′). This is proved by Scott induction as Lemma 2.A.4 in
the appendix.

Using Proposition 2.5.1 we have for each left-computable real r in the
interval [0,1] an inhabitant tr of the type ∀α.α→ α given by Λ.λx.er 〈〉;x.

We now show that these are the only inhabitants of ∀α.α → α of the
form Λ.λx.e. Given such an inhabitant let r = P⇓ (e[〈〉/x]). We know from
Proposition 2.5.1 that r is left-computable.

Given a value v of type τ and n ∈ N we define relations R(n) = {(〈〉,v)}
and S(n) = {(v,〈〉)}. Note that the relations are independent of n, i.e. R and S
are constant relations. By reflexivity of the logical relation and the relational
actions of types we have

∀n, (e[〈〉/x], e[v/x]) ∈ R>>(n) and ∀n, (e[v/x], e[〈〉/x]) ∈ S>>(n) (2.4)
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from which we conclude that P⇓ (e[〈〉/x]) = P⇓ (e[v/x]). We now show that
v and e[v/x] are CIU-equivalent. Let E ∈ Stk (τ) be an evaluation context.
Let q = P⇓ (E[v]). Define the evaluation context E′ = −;eq 〈〉. Then (E,E′) ∈
S>(n) for all n which then means, using (2.4) and Proposition 2.3.5, that
P⇓ (E[e[v/x]]) ≤ P⇓ (E′[e[〈〉/x]]). We then have

P⇓ (E′[e[〈〉/x]]) = P⇓ (e[〈〉/x]) ·P⇓
(
eq 〈〉

)
= r ·P⇓ (E[v])

and so P⇓ (E[e[v/x]]) ≤ r ·P⇓ (E[v]).
Similarly we have (E′ ,E) ∈ R>(n) for all n which implies

P⇓ (E[e[v/x]]) ≥ P⇓ (E′[e[〈〉/x]]) .

We also have P⇓ (E′[e[〈〉/x]]) = r ·P⇓ (E[v]).
So we have proved P⇓ (E[e[v/x]]) = r ·P⇓ (E[v]) = P⇓ (e[v/x]) ·P⇓ (E[v]). It

is easy to show by Scott induction, that P⇓ (E[tr []v]) = P⇓ (er 〈〉) · P⇓ (E[v]).
We have thus shown that for any value v, the terms e[v/x] and P⇓ (tr []v) are
CIU-equivalent. Using Theorem 2.4.10 and Lemmas 2.4.12 and 2.4.11 we
conclude that the terms ∀α.λx.e and tr are contextually equivalent.

Remark 2.5.2. Unfortunately we cannot so easily characterise general values
of the type ∀α.α→ α, that is, those not of the formΛ.v for a value v. Consider
the term Λ.t 1

2
⊕ t 1

3
. It is a straightforward calculation that for any evaluation

context E and value v,

P⇓
(
E
[(
t 1

2
⊕ t 1

3

)
v
])

=
5

12
P⇓ (E[v]) = P⇓

(
E
[
t 5

12
v
])

thus if Λ.t 1
2
⊕ t 1

3
is equivalent to any Λ.tr it must be Λ.t 5

12
.

Let E be the evaluation context

E = let f = −[] in let x = f 〈〉 in f 〈〉.

We compute P⇓
(
E
[
Λ.t 1

2
⊕ t 1

3

])
= 13

72 and P⇓
(
E
[
Λ.t 5

12

])
= 25

144 showing that
Λ.t 1

2
⊕ t 1

3
is not equivalent to Λ.t 5

12
.

This example also shows that extensionality for expressions, as opposed to
values, of function type does not hold. The reason is, of course, that proba-
bilistic choice is a computational effect and so it matters how many times we
evaluate the term and this is what the constructed evaluation context uses to
distinguish the terms. �

A free theorem for lists

Let τ be a type and α not free in τ . We write [τ] for the type of lists µα.(1 +
τ ×α), nil for the empty list and

cons : ∀α.α→ [α]→ [α]

cons =Λ.λx.λxs.fold (inr〈x,xs〉).
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for the other constructor. The function map of type

∀α.∀β.(α→ β)→ [α]→ [β]

is the function applying the given function to all elements of the list in order.
Additionally, we define composition of terms f ◦g as the term λx.f (g(x)) (for
x not free in f and g).

We will now show that if a term m of type ∀α.∀β.(α→ β)→ [α]→ [β] is
equivalent to a term of the form Λ.Λ.λx.e then it satisfies

m[][] (f ◦ g) =ctx m[][]f ◦ map[][]g

for all values f and all deterministic and terminating g. By this we mean that
for each value v in the domain of g, there exists a value u in the codomain of
g, such that g v =ctx u. For instance, if g reduces without using choice reduc-
tions and is terminating, then g is deterministic. There are other functions
that are also deterministic and terminating, though, for instance λx.〈〉⊕〈〉. In
the appendix we show that these restrictions are not superfluous.

So let m be a closed term of type ∀α.∀β.(α→ β)→ [α]→ [β] and suppose
further that m is equivalent to a term of the form Λ.Λ.λx.e. Let τ,σ ,ρ ∈ T be
closed types and f ∈ Val (σ → ρ) and g ∈ Tm (τ→ σ ) be a deterministic and
terminating function. Then

∅ | ∅ `m[][](f ◦ g) =ctx m[][]f ◦ map[][]g : [τ]→ [ρ].

We prove two approximations separately, starting with .ctx. We use Theo-
rem 2.4.10 multiple times. We have

α,β | ∅ `m[][] : (α→ β)→ [α]→ [β].

Let R = λn.{(v,u) | g v =ctx u} be an element of VRel (τ,σ ) and S ∈ VRel (ρ,ρ)
the constant identity relation on Val (ρ). Let ϕ map α to R and β to S. Propo-
sition 2.4.5 gives

(m[][],m[][]) ∈ ~(α→ β)→ [α]→ [β]� (ϕ)>>(n)

for all n ∈N.
We first claim that (f ◦ g,f ) ∈ ~α→ β� (ϕ)(n) for all n ∈ N. Since f is a

value and has a type, it must be of the form λx.e for some x and e. Take j ∈
N, related values (v,u) ∈ r(j), k ≤ j and related evaluation contexts (E,E′) ∈
S>(k). By Theorem 2.4.10 and the definition of relation R we have

P⇓ (E′[f u]) = P⇓ (E′[f (g v)]) .

Using the results about P⇓k (·) and P⇓ (·) proved in Section 2.C in the appendix
we get

P
⇓
k (E[f (g(v))]) ≤

∑
π:f (g(v));∗w

W (π)P⇓k (E[w]) ≤
∑

π:f (g(v));∗w

W (π)P⇓ (E′[w])
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and the last term is equal to P⇓ (E′[f (g v)]) which is equal to P⇓ (E′[f u]).
From this we can conclude

(m[][] (f ◦ g),m[][]f ) ∈ ~[α]→ [β]� (ϕ)>>(n)

for all n ∈N. Note that we have not yet used the fact that g is deterministic
and terminating. We do so now.

Let xs be a list of elements of type τ . Then induction on the length of
xs, using the assumption on g, we can derive that there exists a list ys of
elements of type σ , such that map[][]g xs =ctx ys and (xs,ys) ∈ ~[α]� (ϕ)(n) for
all n. This gives us

(m[][] (f ◦ g)xs,m[][]f ys) ∈ ~[β]� (ϕ)>>(n)

for all n ∈ N. Since the relation S is the identity relation we have for all
evaluation contexts E of a suitable type, (E,E) ∈ S>(n) for all n, which gives

m[][] (f ◦ g)xs .CIU m[][]f ys =ctx m[][]f (map[][]g xs)

=ctx (m[][]f ◦ map[][]g)xs

where the last equality holds because β-reduction is an equivalence.
We now conclude by using the fact that m is (equivalent to) a term of the

form Λ.Λ.λx.e and use Lemma 2.4.11 to conclude

m[][] (f ◦ g) .ctx m[][]f ◦ map[][]g.

For the other direction, we proceed analogously. The relation for β re-
mains the identity relation, and the relation for R for α is {(v,u) | v =ctx g u}.

2.6 Extension with References

We now sketch the extension of Fµ,⊕ to include dynamically allocated refer-
ences. For simplicity we add ground store only, so we do not have to solve a
domain equation giving us the space of semantic types and worlds [4]. We
show an equivalence using state and probabilistic choice which shows that
the addition of references to the language is orthogonal to the addition of
probabilistic choice. We conjecture that the extension with higher-order dy-
namically allocated references can be done as in earlier work on step-indexed
logical relations [40].

We extend the language by adding the type refnat and extend the gram-
mar of terms e with

e ::= . . . | ` | ref e | e1 := e2 | !e

with ` being locations.
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To model allocation we need to additionally index the interpretation of
types by worlds. To keep things simple a world w ∈ W is partial bijection f
on locations together with, for each pair of locations (`1, `2) ∈ f , a relation R
on numerals. We write (`1, `2,R) ∈ w when the partial bijection in w relates `1
and `2 and R is the relation assigned to the pair (`1, `2). Technically, worlds
can be encoded as subsets of

Loc2 ×P ({n | n ∈N} × {n | n ∈N})

satisfying the conditions described above.
The operational semantics has to be extended to include heaps, which are

modelled as finite maps from locations to numerals. A pair of heaps (h1,h2)
satisfies the world w, written (h1,h2) ∈ bwc, when

∀(`1, `2,R) ∈ w, (h1(`1),h2(`2)) ∈ R.

The interpretation of types is then extended to include worlds. The de-
notation of a type is now an element of W mon→ VRel (·, ·) where the order on
W is inclusion. Let

WRel (τ,τ ′) =W mon→ VRel (τ,τ ′) .

We define

~∆ ` ref nat� (ϕ)(w)(n) = {(`1, `2) | (`1, `2,=) ∈ w}

where = is the equality relation on numerals. Notice that the step-index is
not used. This is because we are only considering first-order state.

The rest of the interpretation stays the same, apart from some quantifica-
tion over “future worlds” in the function case to maintain monotonicity. We
also need to change the definition of the >>-closure to use the world satis-
faction relation. For R ∈WRel (τ,τ ′) we define an indexed relation (indexed
by worlds) R> as

R>(w)(n) =
{

(E,E′)

∣∣∣∣∣∣ ∀w′ ≥ w,∀k ≤ n,∀(h1,h2) ∈ bw′c ,∀(v1,v2) ∈ R(w′)(k),
P
⇓
k (〈h1,E[v1]〉) ≤ P⇓ (〈h2,E[v2]〉)

}
and analogously for ·⊥.

We now sketch a proof that two modules, each implementing a counter by
using a single internal location, are contextually equivalent. The increment
method is special. When called, it chooses, uniformly, whether to increment
the counter or not. The two modules differ in the way they increment the
counter. One module increments the counter by 1, the other by 2. Concretely,
we show that the two counters

pack (λ− .ref1,λx.!x,λx.〈〉 ⊕ (x := S !x))
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and

pack (λ− .ref2,λx.!x div 2,λx.〈〉 ⊕ (x := S (S !x)))

are contextually equivalent at type

∃α.(1→ α)× (α→ nat)× (α→ 1).

We have used div for the division function on numerals which can easily be
implemented.

The interpretation of existentials ~∆ ` ∃α.τ� (ϕ)(w)(n) is{
(packv,packv′)

∣∣∣∣∣ ∃σ,σ ′ ∈ T,∃R ∈WRel (σ,σ ′) ,
(v,v′) ∈ ~∆,α ` τ� (ϕ [α 7→ R]) (w)(n)

}
.

To prove the counters are contextually equivalent we show them directly
related in the value relation. We choose the types σ and σ ′ to be ref nat and
the relation R to be

R(w)(n) = {(`1, `2) | (`1, `2,G(2×−)) ∈ w}

where G(2×−) is the relation

{(k,2 · k)
∣∣∣ k ∈N} .

Notice again that the relation is independent of the step-index n. We now
need to check all three functions to be related at the value relation.

First, the allocation functions. We only show one approximation, the
other is completely analogous. Concretely, we show that for any n ∈N and
any world w ∈W we have

(λ− .ref 1,λ− .ref 2) ∈ ~1→ α� (R)(w)(n).

Let n ∈N and w ∈ W . Take w′ ≥ w and related arguments v,v′ at type 1. We
know by construction that v = v′ = 〈〉 so we have to show that

(ref 1,ref 2) ∈ ~α� (R)>>(w′)(n).

Let w′′ ≥ w′ and j ≤ n and take two related evaluation contexts (E,E′) at
~α� (R)>(w′′)(j) and (h,h′) ∈ bw′′c. Let ` < dom(h) and `′ < dom(h′). We have

P
⇓
j (〈h,E[ref 1]〉) = P⇓j (〈h [` 7→ 1],E[`]〉)

and

P⇓ (
〈
h′ ,E′[ref 2]

〉
) = P⇓ (

〈
h′

[
`′ 7→ 2

]
,E′[`′]

〉
) .

Let w′′′ be w′′ extended with (`,`′ ,G(2×−)). Then the extended heaps are in
bw′′′c and w′′′ ≥ w′′. Thus E and E′ are also related at w′′′ by monotonicity.
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Similarly we can prove that (`,`′) ∈ ~α� (R)(w′′′)(j). This then allows us to
conclude

P
⇓
j (〈h [` 7→ 1],E[`]〉) ≤ P⇓ (

〈
h′

[
`′ 7→ 2

]
,E′[`′]

〉
)

which concludes the proof.
Lookup is simple so we omit it. Update is more interesting. Let n ∈ N

and w ∈W . Let ` and `′ be related at ~α� (R)(w)(n). We need to show

(〈〉 ⊕ (` := S !`) ,〈〉 ⊕ (`′ := S (S !`′))) ∈ ~1� (R)>>(w)(n).

Take w′ ≥ w, j ≤ n and (h,h′) ∈ bw′c. Take related evaluation contexts E and
E′ at w′ and j. We have

P
⇓
j (〈h,E [〈〉 ⊕ (` := S !`)]〉) = 1

2P
⇓
j (〈h,E [〈〉]〉) + 1

2P
⇓
j (〈h,E [` := S !`]〉)

P⇓ (〈h′ ,E′ [〈〉 ⊕ (`′ := SS !`′)]〉) = 1
2P
⇓ (〈h′ ,E′ [〈〉]〉) + 1

2P
⇓ (〈h′ ,E′ [`′ := SS !`′]〉)

Since ` and `′ are related at ~α� (R)(w)(n) and w′ ≥ w and (h,h′) ∈ bw′c we
know that h(`) =m and h′(`′) = 2 ·m for some m ∈N. Thus

P
⇓
j (〈h,E [` := S !`]〉) = P⇓j (〈h1,E[〈〉]〉)

where h1 = h [` 7→m+ 1]. And also

P⇓ (
〈
h′ ,E′

[
`′ := SS !`′

]〉
) = P⇓ (

〈
h2,E

′[〈〉]
〉
)

where h2 = h′
[
`′ 7→ 2 · (m+ 1)

]
. The fact that h1 and h2 are still related con-

cludes the proof.
The above proof shows that reasoning about examples involving state and

choice is possible.

2.7 Conclusion

We have constructed a step-indexed logical relation for a higher-order lan-
guage with probabilistic choice. In contrast to earlier work, our language
also features impredicative polymorphism and recursive types. We also show
how to extend our logical relation to a language with dynamically allocated
local state. In future work, we will explore whether the step-indexed tech-
nique can be used for developing models of program logics for probabilistic
computation that support reasoning about more properties than just contex-
tual equivalence. We are also interested in including primitives for continu-
ous probability distributions.



2.7. Conclusion 55

Acknowledgements

We thank Filip Sieczkowski, Kasper Svendsen and Thomas Dinsdale-Young
for discussions of various aspects of this work and the reviewers for their
comments.

This research was supported in part by the ModuRes Sapere Aude Ad-
vanced Grant from The Danish Council for Independent Research for the
Natural Sciences (FNU) and in part by Microsoft Research through its PhD
Scholarship Programme.



56 Step-Indexed Logical Relations for Probability

2.A Language Definitions and Properties

τ ::= α | 1 | nat | τ1 × τ2 | τ1 +τ2 | τ1→ τ2 | µα.τ | ∀α.τ | ∃α.τ
v ::= x | 〈〉 | n | 〈v1,v2〉 | λx.e | inl v | inr v |Λ.e | packv
e ::= x | 〈〉 | n | 〈e1, e2〉 | λx.e | inl e | inr e |Λ.e | packe

| proji e | e1 e2 | match (e,x1.e1,x2.e2) | e[]
| unpack e1 as x in e2 | unfolde | folde | rande
| if1 e then e1 else e2 | Pe | Se

E ::= − | 〈E,e〉 | 〈v,E〉 | inl E | inr E | packE
| proji E | E e | vE | match (E,x1.e1,x2.e2) | E[]

| unpack E as x in e | unfoldE | foldE
| if1 E then e1 else e2 | randE | PE | SE

Figure 2.2: Types, terms and evaluation contexts. n are numerals of type nat.

α ∈ ∆
∆ ` α

∆ ` 1 ∆ ` nat
∆ ` τ1 ∆ ` τ2

∆ ` τ1 × τ2

∆ ` τ1 ∆ ` τ2

∆ ` τ1 +τ2

∆ ` τ1 ∆ ` τ2

∆ ` τ1→ τ2

∆,α ` τ
∆ ` ∃α.τ

∆,α ` τ
∆ ` ∀α.τ

∆,α ` τ
∆ ` µα.τ

Figure 2.3: Well-formed types. The judgement ∆ ` τ expresses ftv(τ) ⊆ ∆.

The following lemma uses definitions from Section 2.3.

Lemma 2.A.1. Φ is monotone and preserves suprema of ω-chains. ♦

Proof. Since the order in F is pointwise and multiplication and addition are
monotone it is easy to see that Φ is monotone.

To show that it is continuous let {fn}n∈ω be an ω-chain in F . If e is a value
the result is immediate. Otherwise we have

Φ

(
sup
n∈ω

fn

)
(e) =

∑
e
p
;e′

p ·
(
sup
n∈ω

fn

)
(e′)

and since suprema in F are computed pointwise we have

=
∑
e
p
;e′

p · sup
n∈ω

(fn(e′))
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x:τ ∈ Γ ∆ ` Γ
∆ | Γ ` x : τ

∆ ` Γ
∆ | Γ ` 〈〉 : 1

∆ | Γ ` e1 : τ1 ∆ | Γ ` e2 : τ2

∆ | Γ ` 〈e1, e2〉 : τ1×τ2

∆ | Γ ,x:τ1 ` e : τ2

∆ | Γ ` λx.e : τ1→τ2

∆ | Γ ` e : τ1 ∆ ` τ2

∆ | Γ ` inl e : τ1 +τ2

∆ | Γ ` e : τ2 ∆ ` τ1

∆ | Γ ` inr e : τ1 +τ2

∆ | Γ ,x1:τ1 ` e1 : τ ∆ | Γ ,x2:τ2 ` e2 : τ ∆ | Γ ` e : τ1 +τ2

∆ | Γ ` match (e,x1.e1,x2.e2) : τ

∆,α | Γ ` e : τ

∆ | Γ `Λ.e : ∀α.τ
∆ | Γ ` e : τ1 × τ2

∆ | Γ ` proji e : τi

∆ | Γ ` e : τ ′→ τ ∆ | Γ ` e′ : τ ′

∆ | Γ ` e e′ : τ

∆ ` τ1 ∆ | Γ ` e : τ[τ1/α]

∆ | Γ ` packe : ∃α.τ

∆ | Γ ` e : ∃α.τ1 ∆ ` τ ∆,α | Γ ,x : τ1 ` e′ : τ
∆ | Γ ` unpack e as x in e′ : τ

∆ | Γ ` e : µα.τ

∆ | Γ ` unfolde : τ[µα.τ/α]

∆ | Γ ` e : τ[µα.τ/α]

∆ | Γ ` folde : µα.τ

∆ | Γ ` e : ∀α.τ ∆ ` τ ′

∆ | Γ ` e[] : τ[τ ′/α]

∆ | Γ ` e : nat

∆ | Γ ` rand e : nat

∆ | Γ ` e : nat ∆ | Γ ` e1 : τ ∆ | Γ ` e2 : τ

∆ | Γ ` if1 e then e1 else e2 : τ

∆ | Γ ` e : nat

∆ | Γ ` Pe : nat

∆ | Γ ` e : nat

∆ | Γ ` Se : nat

Figure 2.4: Typing of terms, where Γ ::= ∅ | Γ ,x:τ and ∆ ::= ∅ | ∆,α.

Using the fact that sum and product are continuous and that the sum in the
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Basic reductions
·7−→

proji 〈v1,v2〉
17−→ vi

(λx.e)v
17−→ e[v/x]

unfold (foldv)
17−→ v

unpack (packv) as x in e
17−→ e[v/x]

(Λ.e)[]
17−→ e

randn
1
n7−→ k (k ∈ {1,2, . . . ,n})

match (inlv,x1.e1,x2.e2)
17−→ e1[v/x1]

match (inrv,x1.e1,x2.e2)
17−→ e2[v/x2]

Pn
17−→max{n− 1,1}

Sn
17−→ n+ 1

if1 1 then e1 else e2
17−→ e1

if1 Sn then e1 else e2
17−→ e2

One step reduction relation ·;

E[e]
p
; E[e′] if e

p
7−→ e′

Figure 2.5: Operational semantics.

definition of Φ is finite we get

Φ

(
sup
n∈ω

fn

)
(e) = sup

n∈ω

∑
e
p
;e′

p · fn(e′)


= sup
n∈ω

Φ (fn) (e) =
(
sup
n∈ω

Φ(fn)
)

(e)

QED

Example 2.A.2. Let us compute probabilities of termination of some exam-
ple programs.

• If v ∈Val then by definition P⇓ (v) = 1.

• If e ∈ Tm \Val is stuck then P⇓ (e) = 0 by definition.
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• Suppose there exists a cycle e 1; e1
1; e2

1; · · · 1; en
1; e. Then P⇓ (e) =

P⇓ (e1) = · · · = P⇓ (en) = 0.

It follows from the assumption that none of ek are values and since the
sum of outgoing weights is at most 1 we have that for each ek and e all
other weights must be 0. We thus get that P⇓ (e) = P⇓ (e1) = · · · = P⇓ (en)
by simply unfolding the fixed point n-times. To show that they are all
0 we use Scott induction. Define

S = {f ∈ F |f (e) = f (e1) = f (e2) = . . . = f (en) = 0} .

Clearly S is an admissible subset of F and ⊥ ∈ S . Using the above
existence of the cycle of reductions it is easy to show that S ⊆ Φ [S].
Hence by the principle of Scott induction we have P⇓ (·) ∈ S and thus
P⇓ (e) = P⇓ (e1) = . . . = P⇓ (en) = 0.

�

This example also shows that we do really want the least fixed point of
Φ , since this allows us to use Scott-induction and prove that diverging terms
have zero probability of termination.

Remark 2.A.3. It is perhaps instructive to consider the relationship to the
termination predicate when we do not have weights on reductions. In such
a case we can consider two extremes, may- and must-termination predicates.
These can be considered to be maps Tm→ 2 where 2 is the boolean lattice
0 ≤ 1. Let B = Tm→ 2. Since 2 is a complete lattice so is B. In particular it is
a pointed ω-cpo. We can define may-termination as the least fixed point of
Ψ : B →B defined as

Ψ (f )(e) =

1 if e ∈Val
max
e;e′

f (e′) otherwise
.

Observe again that if e is stuck then Ψ (f )(e) = 0 since the maximum of an
empty set is the least element by definition.

Must-termination is slightly different. We need a special case for stuck
terms.

Ψ ′(f )(e) =


1 if e ∈Val

min
e;e′

f (e′) ∃e′ ∈ Tm,p ∈ I , e p
; e′

0 otherwise

Let ↓ be the least fixed point of Ψ and ⇓ the least fixed point of Ψ ′. An
additional property that holds for ↓ and ⇓, because of the fact that 2 is dis-
crete, is that for a given e, if e↓= 1 then there is a natural number n, such that
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Ψ n(⊥)(e) = 1, i.e. if it terminates we can observe this in finite time. This is
because if an increasing sequence in 2 has supremum 1, then the sequence
must be constant 1 from some point onward.

In contrast, if P⇓ (e) = 1 it is not necessarily the case that there is a nat-
ural number n with Φn(⊥)(e) = 1 because it might be the case that 1 is only
reached in the limit. �

The next lemma uses the abbreviation ; defined in Section 2.5.

Lemma 2.A.4. For all terms e,e′ ∈ Tm, P⇓ (e;e′) = P⇓ (e) ·P⇓ (e′). ♦

Proof. We prove two approximations separately, both of them by Scott in-
duction.

≤ Consider the set

S =
{
f ∈ F

∣∣∣∣∣∣ f ≤ P⇓ (·)∧∀e,e′ ∈ Tm,
f (e;e′) ≤ P⇓ (e) ·P⇓ (e′)

}
.

It is easy to see that S contains ⊥ and is closed under ω-chains, so we
only need to show that it is preserved by Φ . The first condition is trivial
to check since P⇓ (·) is a fixed point of Φ . Let f ∈ F and e,e′ ∈ Tm.
If e ∈ Val then Φ(f )(e;e′) = f (e′) on account of one β-reduction. By
assumption f (e′) ≤ P⇓ (e′) and by definition we have P⇓ (e) = 1.

If e is not a value we have Φ(f )(e;e′) =
∑
e
p
;e′′

p · f (e′′;e′) ≤
∑
e
p
;e′′

p ·
P⇓ (e′′) ·P⇓ (e′) = P⇓ (e) ·P⇓ (e′).

Thus we can conclude by Scott induction that P⇓ (·) ∈ S .

≥ For this direction we consider the set

S =
{
f ∈ F

∣∣∣∣∣∣ ∀E ∈ Stk, e ∈ Tm,v ∈Val,
P⇓ (E[e]) ≥ f (e) ·P⇓ (E[v])

}
.

It is easy to see that it is admissible and closed under Φ . Hence P⇓ (·) ∈
S . Thus we have, taking E = −;e′ and any value v, that P⇓ (e) ·P⇓ (v;e′) ≤
P⇓ (e;e′) and it is easy to see that P⇓ (v;e′) = P⇓ (e′).

QED

Interpretation of types and the logical relation

Lemma 2.A.5. The interpretation of types in Figure 2.1 is well defined. In par-
ticular the interpretation of types is non-expansive. ♦

The substitution lemma is crucial for proving compatibility of existential
and universal types. The proof is by induction on the derivation ∆ ` τ .
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Lemma 2.A.6 (Substitution). For any well-formed types ∆,α ` τ and ∆ ` σ and
any ϕ we have ~∆ ` τ[σ/α]� (ϕ) = ~∆,α ` τ� (ϕ [α 7→ ~∆ ` σ� (ϕ)]). ♦

We state and prove additional context extension lemmas. The other cases
are similar.

Lemma 2.A.7. Let n ∈N. If

(v,v′) ∈ ~∆ ` τ1→ τ2� (ϕ)(n)

and

(E,E′) ∈ ~∆ ` τ2� (ϕ)>(n)

then

(E ◦ (v []),E′ ◦ (v′ [])) ∈ ~∆ ` τ1� (ϕ)>(n).

♦

This follows directly from the definition of the interpretation of types.

Corollary 2.A.8. Let n ∈N. If

(e,e′) ∈ ~∆ ` τ1� (ϕ)>>(n)

and

(E,E′) ∈ ~∆ ` τ2� (ϕ)>(n)

then

(E ◦ ([]e),E′ ◦ ([]e′)) ∈ ~∆ ` τ1→ τ2� (ϕ)>(n).

♦

Proof. Let n ∈ N. Take (v,v′) ∈ ~∆ ` τ1→ τ2� (ϕ)(n). By Lemma 2.A.7 and
monotonicity we have for all k ≤ n, (E ◦ (v []),E′ ◦ (v′ [])) ∈ ~∆ ` τ1� (ϕ)>(k) and
by the assumption that (e,e′) ∈ ~∆ ` τ1� (ϕ)>>(n) we have

P
⇓
k (E[v e]) ≤ P⇓ (E′[v′ e′])

concluding the proof. QED

Lemma 2.A.9. Let n ∈N. If (E,E′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)>(n) then

(E ◦ (unfold []),E′ ◦ (unfold [])) ∈ ~∆ ` µα.τ� (ϕ)>(n).

♦
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Proof. Let n ∈N. We consider two cases.

• n =m+ 1

Take (foldv,foldv′) ∈ ~∆ ` µα.τ� (ϕ)(n). By definition

(v,v′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)(m).

Let k ≤ n. If k = 0 the condition is trivially true since

P
⇓
k (E[unfoldfoldv]) = 0

so assume k = ` + 1. Note that crucially ` ≤ m. Using Lemma 2.4.3,
Lemma 2.3.4 and Lemma 2.3.1 we have

P
⇓
k (E[unfold (foldv)]) = P⇓` (E[v])

≤ P⇓ (E′[v′])

= P⇓ (E′[unfold (foldv′)])

concluding the proof.

• n = 0. This case is trivial, since P⇓0 (e) = 0 for any e.

QED

Lemma 2.A.10. Let n ∈N. If (E,E′) ∈ ~∆ ` µα.τ� (ϕ)>(n) then

(E ◦ (fold []),E′ ◦ (fold [])) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)>(n).

♦

Proof. Easily follows from the fact that if (v,v′) are related at the unfolded
type then (foldv,foldv′) are related at the folded type (using weakening to
get to the same stage). QED

Lemma 2.A.11 (Functional extensionality for values). Suppose τ,σ ∈ T(∆) and
let λx.e and λx′ .e′ be two values of type τ → σ in context ∆ | Γ . If for all u ∈
Val (τ) we have ∆ | Γ ` (λx.e) u .ctx (λx′ .e′) u : σ then

∆ | Γ ` λx.e .ctx λx′ .e′ : τ→ σ .

♦

Proof. We use Theorem 2.4.10 several times and show λx.e and λx′ .e′ are
logically related. Let n ∈ N, ϕ ∈ VRel (∆) and (γ,γ ′) ∈ ~∆ ` Γ � (ϕ)(n). Let
v = λx.eγ and v′ = λx′ .e′γ ′. We are to show (v,v′) ∈ ~∆ ` τ→ σ� (ϕ)>>(n) and
to do this we show directly (v,v′) ∈ ~∆ ` τ→ σ� (ϕ)(n).

Let j ≤ n, (u,u′) ∈ ~τ� (ϕ)(n), k ≤ j and (E,E′) ∈ ~σ� (ϕ)>(k). We have to
show P

⇓
k (E[v u]) ≤ P⇓ (E′[v′ u′]). From Proposition 2.4.5 we have that (v,v) ∈

~τ→ σ� (ϕ)>>(n) and so P⇓k (E[v u]) ≤ P⇓ (E′[v u′]). From the assumption of
the lemma we have that v u′ .CIU v′ u′ which concludes the proof. QED
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Lemma 2.A.12 (Extensionality for the universal type). Let τ ∈ T(∆,α) be a
type. LetΛ.e,Λ.e′ be two terms of type ∀α.τ in context ∆ | Γ . If for all closed types
σ ∈ T we have

∆ | Γ ` e .ctx e′ : τ[σ/α]

then ∆ | Γ `Λ.e .ctx Λ.e′ : ∀α.τ . ♦

Proof. We again use Theorem 2.4.10 multiple times. Let n ∈N, ϕ ∈ VRel (∆)
and (γ,γ ′) ∈ ~∆ ` Γ � (ϕ)(n). Let v = Λ.eγ and v′ = Λ.e′γ ′. We show directly
that (v,v′) ∈ ~∆ ` ∀α.τ� (ϕ)(n).

So take σ,σ ′ ∈ T and r ∈ VRel (σ,σ ′) and we need to show (eγ,e′γ ′) ∈
~∆,α� (ϕ [α 7→ r])>>(n). Let k ≤ n and (E,E′) related at k. We have to show
P
⇓
k (E[eγ]) ≤ P⇓ (E′[e′γ ′]). From Proposition 2.4.5 we have

(eγ,eγ ′) ∈ ~∆,α� (ϕ [α 7→ r])>>(n)

and so P⇓k (E[eγ]) ≤ P⇓ (E′[eγ ′]). Let ~σ be the types for the right hand side in
ϕ. Then E′ ∈ Stk (τ[~σ,σ ′/∆,α]). Using the assumption of the lemma we get
that eγ ′ .CIU e′γ ′ at the type τ[~σ,σ ′/∆,α] which immediately implies that
P⇓ (E′[eγ ′]) ≤ P⇓ (E′[e′γ ′]) concluding the proof. QED

2.B Probability of Termination

We prove the claims from Section 2.5 about the termination probability.

Proposition 2.B.1. For any expression e, P⇓ (e) is a left-computable real number.
♦

Proof. We first prove by induction that for any n, Φn(⊥) restricts to a map
Tm→ [0,1]∩Q. The proof is simple since the function ⊥ clearly maps into
rationals and for the inductive step we use the fact that the sums in the defi-
nition ofΦ are always finite, and the rational numbers are closed under finite
sums.

To conclude the proof we have by definition that P⇓ (e) = supn∈ωΦ
n(⊥)(e)

and we have just shown that all the numbers Φn(⊥)(e) are rational. Moreover
the sequence {Φn(⊥)(e)}n∈N is computable, since for a given n we only need
to check all the reductions from e of length at most n to determine the value
of Φn(⊥)(e) and the reduction relation

p
; is naturally computable. QED

Example 2.B.2. To see that the probability of termination can also be non-
computable we describe a program whose probability of termination would
allow us to solve the halting problem were it computable.

The program we construct is recursively defined as T = fix[][]ϕ where

ϕ = λf .λx.t x⊕ (Ω⊕ f (succ x))
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where t x is a program that runs the x-th Turing machine on the empty input
and does not use any choice reductions. ThusP⇓ (t x) ∈ {0,1}. It is well known
that the empty string acceptance problem is undecidable. Note that we put
Ω in the program to ensure that every second digit in binary will be 0. It is
an easy computation to show that

P⇓ (T 1) =
∞∑
n=0

1
22n+1pn+1

where pn = 1 if the n-th Turing machine terminates on the empty input and
0 otherwise. If P⇓ (T 1) were computable we could decide whether a given
Turing machine accepts the empty string by computing its index n and then
computing the first 2n digits of P⇓ (T 1). �

We now generalise the last example and show that any left-computable
real arises as the probability of termination of a program. Technically, we
show that given a term of the language that computes an increasing bounded
sequence of rationals (represented as pairs of naturals) we can define a pro-
gram that terminates with probability the supremum of the sequence. We
then use the fact that our language Fµ,⊕ is Turing complete to claim that any
computable sequence of rationals can be represented as such a term of Fµ,⊕.

Proposition 2.B.3. For every left-computable real in [0,1] there is a program er
of type 1→ 1 such that P⇓ (er 〈〉) = r. ♦

Proof. So let r : nat→ nat×nat compute an increasing sequence of rationals
in the interval [0,1]. Additionally assume that for all n ∈N.

r n
cf

=⇒ 〈kn, `n〉

for some kn, `n ∈N. That is, r does not use choice reductions. This is not an
essential limitation, but simplifies the argument which we are about to give.

First we define a recursive function e of type e : (nat→ nat× nat)→ 1 as
e = fix[][]ϕ where

ϕ = λf .λr.let (k,`) = r 1 in

let y = rand` in

if y ≤ k then 〈〉 else f r ′

and

r ′ = λz.
r (succz)− (k,`)

1− (k,`)

and subtraction and division is implemented in the obvious way. Note that
the condition in ϕ ensures that (k,`) does not represent the rational number
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1 and therefore division would make sense. But technically, since we im-
plement rationals with pairs of naturals no exception can occur and we just
represent the pair with the second component being 0.

Let f and r be values of the appropriate type. We have

P
⇓
m+1 (ϕf r) ≤ k1

`1
P
⇓
m (〈〉) +

`1 − k1

`1
·P⇓m (f r ′)

where r 1
cf

=⇒ (k1, `1). The inequality comes from the fact that applying r
might take some unfold-fold reductions. Iterating this we get

P
⇓
m+1+2n (e r) ≤ kn

`n
+
`n − kn
`n

·P⇓m+1

(
e r(n)

)
where r n

cf
=⇒ (kn, `n) and

r(n) = λz.
r (succn z)− (kn, `n)

1− (kn, `n)

is the n-th iteration of the ′ used on r in ϕ.

It is easy to see that P⇓1
(
e r(n)

)
= 0 since it takes at least one unfold-

fold and one choice reduction to terminate. Thus picking m = 1 we have
P
⇓
2+2n (e r) = kn

`n
and thus

sup
n∈ω

P
⇓
n (e r) ≤ sup

n∈ω

kn
`n

Using the same reasoning as above we also have

P⇓ (e r) ≥ kn
`n

+
`n − kn
`n

·P⇓
(
e r(n)

)
≥ kn
`n

which shows (using Proposition 2.3.5) that

sup
n∈ω

kn
`n
≤ P⇓ (e r) ≤ sup

n∈ω
P
⇓
n (e r) ≤ sup

n∈ω

kn
`n

and so

sup
n∈ω

kn
`n

= P⇓ (e r) .

QED
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2.C Distributions

We now define distributions and prove some of their properties and proper-
ties of the probability of termination which are used in some of the examples.

By a distribution we mean a subprobability measure on the discrete space
Val of values. Let

Dist =

f : Val→ [0,1]|
∑
v∈Val

f (v) ≤ 1


be the space of subprobability measures on Val. To be precise, f ∈ Dist
are not measures, but given any f we can define a subprobability measure
µf (A) =

∑
v∈A f (v) and given any subprobability measure µ, we can define

fµ ∈Dist as the Radon-Nikodym derivative with respect to the counting mea-
sure. Or in more prosaic terms fµ(v) = µ ({v}). It is easy to see that these two
operations are mutually inverse and since f ∈ Dist are easier to work with
we choose this presentation.

Lemma 2.C.1. Dist ordered pointwise is a pointed ω-cpo. ♦

Proof. The bottom element is the everywhere 0 function. Let {fn}n∈ω be an
ω-chain. Define the limit function f as the pointwise supremum

f (v) = sup
n∈ω

fn(v).

Clearly all pointwise suprema exist and f is the least upper bound, provided
we can show that f ∈Dist. To show this last fact we need to show∑

v∈Val

sup
n∈ω

fn(v) ≤ 1.

but this is a simple consequence of Fatou’s lemma since from the assumption
that {fn}n∈ω we have supn∈ω fn(v) = limn→∞ fn(v) = liminfn→∞ fn(v) and so by
Fatou’s lemma (relative to the counting measure on Val) we have

∑
v∈Val

sup
n∈ω

fn(v) ≤ liminf
n→∞

 ∑
v∈Val

fn(v)

 ≤ liminf
n→∞

1 = 1.

QED

Now define Ξ : (Tm→Dist)→ (Tm→Dist) as follows

Ξ(ϕ)(e) =


δe if e ∈Val∑
e
p
;e′

p ·ϕ (e′) otherwise
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where δe is (the density function of) the Dirac measure at point e. Since Dist
is an ω-cpo so is Tm→ Dist ordered pointwise. It is easy to see that in this
ordering Ξ is monotone and continuous and so by Kleene’s fixed point theo-
rem it has a least fixed point reached in ω iterations. Let D = supn∈ω (Ξn(⊥))
be this fixed point.

Lemma 2.C.2. Let e ∈ Tm and v ∈ Val. If D(e)(v) > 0 then there exists a path π
from e to v, i.e. e steps to v. ♦

Proof. We use Scott induction. Define

S = {f : Tm→Dist | ∀e,v, f (e)(v) > 0→∃π,π : e;∗ v}

The set S contains ⊥. To see that it is closed under ω-chains observe that if(
supn∈ω fn

)
(e)(v) > 0 then there must be n ∈ ω, such that fn(e)(v) > 0 so we

may use the path from e to v that we know exists from the assumption that
fn ∈ S .

It is similarly easy to see that given f ∈ S we have Ξ(f ) ∈ S . Thus we have
that D ∈ S concluding the proof. QED

Lemma 2.C.3. For any expression e ∈ Tm we have∑
v∈Val

D(e)(v) = P⇓ (e)

♦

Proof. First we show by induction on n that all the finite approximations of
P⇓ (e) and D(e) agree.

• The base case is trivial since by definition∑
v∈Val

Ξ0(⊥)(e)(v) = 0 = Φ0(⊥)(e)

• For the inductive case we consider two cases. If e ∈ Val then both sides
are 1. In the other case we have

∑
v∈Val

Ξn+1(⊥)(e)(v) =
∑
v∈Val

∑
e
p
;e′

p ·Ξn(e′)

 (v)

=
∑
v∈Val

∑
e
p
;e′

p ·Ξn(e′)(v)


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by Tonelli’s theorem we can we can interchange the sums to get

=
∑
e
p
;e′

p ∑
v∈Val

Ξn(e′)(v)


=

∑
e
p
;e′

p ·Φn(⊥)(e′) = Φn+1(⊥)(e)

Thus we have that for all n,∑
v∈Val

Ξn(⊥)(e)(v) = Φn(⊥)(e)

and so

sup
n∈ω

 ∑
v∈Val

Ξn(⊥)(e)(v)

 = sup
n∈ω

(Φn(⊥)(e)) = P⇓ (e)

By the dominated convergence theorem we can exchange the sup (which is
the limit) and the sum on the left to get

sup
n∈ω

 ∑
v∈Val

Ξn(⊥)(e)(v)

 =
∑
v∈Val

sup
n∈ω

(Ξn(⊥)(e)(v))

=
∑
v∈Val

D(e)(v)

as required. QED

Proposition 2.C.4 (Monadic bind for distributions). Let e ∈ Tm and E an eval-
uation context of appropriate type.

D (E[e]) =
∑
v∈Val

D(e)(v) · D (E[v]) .

♦

Proof. It is easy to show by induction on ` that

∀e ∈ Tm,Ξ` (⊥) (E[e]) =
∑
v∈Val

∑
π:e;∗v

len(π)≤`

W (π) ·Ξ`−len(π) (E[v]) (2.5)

(using the fact that the length of the empty path is 0 and its weight 1).
Similarly it is easy to show by induction on ` that

∀e ∈ Tm,Ξ`+1 (⊥) (e) (v) =
∑

π:e;∗v
len(π)≤`

W (π) (2.6)
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which immediately implies

∀e ∈ Tm,D(e)(v) =
∑

π:e;∗v

W (π) (2.7)

Using these we have

D(E[e]) = sup
`∈ω

∑
v∈Val

∑
π:e;∗v

len(π)≤`

W (π) ·Ξ`−len(π) (E[v])

and since for each v the sequence
∑

π:e;∗v
len(π)≤`

W (π) ·Ξ`−len(π) (E[v]) is increasing

with ` we have

=
∑
v∈Val

sup
`∈ω

∑
π:e;∗v

len(π)≤`

W (π) ·Ξ`−len(π) (E[v])

=
∑
v∈Val

∑
π:e;∗v

W (π) · D (E[v])

=
∑
v∈Val

D (E[v])
∑

π:e;∗v

W (π)

=
∑
v∈Val

D(e)(v) · D (E[v])

QED

Corollary 2.C.5. Let e ∈ Tm be typeable and E an evaluation context of appro-
priate type. Then P⇓ (E[e]) =

∑
π:e;∗vW (π) ·P⇓ (E[v]). ♦

Corollary 2.C.6. For any term e and evaluation context E the equality

P⇓ (E[e]) =
∑
v∈Val

D(e)(v) ·P⇓ (E[v])

holds. ♦

Corollary 2.C.7. Let e ∈ Tm and E an evaluation context. Suppose D(e) = p · δv
for some v ∈Val and p ∈ [0,1]. Then P⇓ (E[e]) = p ·P⇓ (E[v]). ♦

Proof. Use Proposition 2.C.4 and Lemma 2.C.3. QED

Proposition 2.C.8. For any evaluation context E and term e and any k ∈N,

P
⇓
k (E[e]) ≤

∑
π:e;∗v

W (π) ·P⇓k (E[v])

♦

The proof proceeds by induction on k.
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2.D Further Examples

In this section we show further equivalences which did not fit into the paper
proper due to space restrictions.

Fair coin from an unfair one

Given an unfair coin, that is, a coin that comes up heads with probability p
and tails with probability 1 − p, where 0 < p < 1 we can derive an infinite
sequence of fair coin tosses using the procedure proposed by von Neumann.
The procedure follows from the observation that if we toss an unfair coin
twice, the likelihood of getting (H, T) is the same as the likelihood of getting
(T, H). So the procedure works as follows

• Toss the coin twice

• If the result is (H, T) or (T, H) return the result of the first toss

• Else repeat the process

We only consider rational p in this section (for a computable p we could
proceed similarly, but the details would be more involved, since the function
which returns 1 with probability p and 0 with probability 1− p is a bit more
challenging to write).

Let 1 ≤ k < n be two natural numbers and p = k
n . Below we define ep : 1→

2 to be the term implementing the von Neumann procedure for generating
fair coin tosses from an unfair coin tp which returns true with probability
p and false with probability 1 − p. We will show that ep is contextually
equivalent to λx.true⊕ false. We define ep as

ep = fix[][]ϕ

where

2 = 1 + 1

true = inl〈〉
false = inr〈〉
e ≡ e′ = match (e, .e′ , .match (e′ , .false, .true))

if e then e1 else e2 = match (e, .e1, .e2)

tp = λ〈〉.let y = randn in (y ≤ k)

and

ϕ = λf .λ〈〉.let x = tp 〈〉 in
let y = tp 〈〉 in
if x ≡ y then f 〈〉 else x.
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By a simple calculation using the operational semantics we can see that
given any evaluation context E, we have

P⇓
(
E[tp 〈〉]

)
=
k
n
P⇓ (E[true]) +

n− k
n

P⇓ (E[false]) .

Given any value f of type (1→ 2) and any evaluation context E with the hole

of type 2 we compute that P⇓ (E[ϕf 〈〉]) is equal to k2+(n−k)2

n2 P⇓ (E[f 〈〉]) + 2 ·
k·(n−k)
n2 P⇓ (E[true⊕ false]). Finally for ep and any evaluation context E with

hole of type 2 we have

P⇓
(
E[ep 〈〉]

)
= P⇓

(
ϕep 〈〉

)
=
k2 + (n− k)2

n2 P⇓
(
E[ep 〈〉]

)
+ 2 · k · (n− k)

n2 P⇓ (E[true⊕ false]) .

from which we have by simple algebraic manipulation that P⇓
(
E[ep 〈〉]

)
=

P⇓ (E[true⊕ false]).
It is now straightforward to show ∅ | ∅ ` ep �log λ〈〉.true⊕ false : 1→ 2

since both ep and λ〈〉.true⊕ false are values, so we can show them related
in the value relation. The proof uses reflexivity of �log .

Alternatively, we could have used Theorem 2.4.10 and showed directly
that ep 〈〉 and true⊕ false are CIU-equivalent and then used extensionality
for values to conclude the proof.

A hesitant identity function

We consider the identity function e that does not return immediately, but
instead when applied to a value v flips a coin whether to return v or call
itself recursively with the same argument. We show that this function is
contextually equivalent to the identity function λx.x. The reason for this is,
intuitively, that even though e when applied may diverge, the probability of
it doing so is 0.

Example 2.D.1. Let e = fix[][] (λf .λx.(x⊕ f x)) : α→ α. We have

α | ∅ ` e .log λx.x : α→ α

and
α | ∅ ` λx.x .log e : α→ α.

�

Proof. We prove the two approximations separately. Let ϕ ∈ VRel (α), n ∈
N. Since e and λx.x are values we show them directly related in the value
relation. In both cases let ϕ = λf .λx.(x⊕ f x) and h = λz.δϕ (foldδϕ)z.
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• By definition of the interpretation of function types we have to show,
given k ≤ n and (v,v′) ∈ ϕr(α)(k), that (ev, (λx.x)v′) ∈ ϕr(α)>>(k).

It is straightforward to see that ev
cf

=⇒ ϕev using exactly one unfold-
fold reduction.

Now let (E,E′) be related at k. We proceed by induction and show that
for every ` ≤ k, P⇓` (E[ev]) ≤ P⇓ (E′[v′]) which suffices by Lemma 2.3.1.
When ` = 0 there is nothing to prove. So let ` = `′ + 1.

P
⇓
` (E[ev]) = P⇓`′ (ϕev) = P⇓`′ (E[v ⊕ ev]) .

If `′ = 0 we are trivially done. So suppose `′ = `′′ + 1 to get using
Lemma 2.3.4

P
⇓
`′ (E[v ⊕ ev]) =

1
2
P
⇓
`′′ (E[v]) +

1
2
P
⇓
`′′ (ev)

Using the fact that `′′ ≤ k and monotonicity we have

P
⇓
`′′ (E[v]) ≤ P⇓ (E′[v′]) .

Using the induction hypothesis we have

P
⇓
`′′ (ev) ≤ P⇓ (E′[v′])

which together conclude the proof.

• Again by definition of the interpretation of function types we have to
show, given k ≤ n and (v,v′) ∈ ϕr(α)(k), that ((λx.x)v′ , e v) ∈ ϕr(α)>>(k).

Again we have that ev′
cf

=⇒ ϕev′ using exactly one unfold-fold reduc-
tion. Let ` ≤ k and (E,E′) related at `. Using Lemma 2.3.1 and the fact
that P⇓ (·) is a fixed point of Φ we have

P⇓ (E′[ev′]) = P⇓ (E′[ϕev′])

=
1
2
P⇓ (E′[v′]) +

1
2
P⇓ (E′[ev′])

and from this we get 1
2P
⇓ (E′[ev′]) = 1

2P
⇓ (E′[v′]) by simple algebraic

manipulation and thus P⇓ (E′[ev′]) = P⇓ (E′[v′]). Using this property it
is a triviality to finish the proof.

QED
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Further simple examples

The following example is a proof of perfect security for the one-time pad en-
cryption scheme. Define the following functions

not : 2→ 2

not = λx.if x then false else true

xor : 2→ 2→ 2

xor = λx.λy.if x then not y else y

gen : 2

gen = true⊕ false

xor is supposed to be the encryption function, with the first argument the
plaintext and the second one the encryption key.

We now encode a game with two players. The first player chooses two
plaintexts and gives them to the second player, who encrypts one of them
(using xor) chosen at random with uniform probability and gives the result
back to the first player. The first player should not be able to guess which of
the plaintexts was encrypted. This is expressed as contextual equivalence of
the following two programs

exp = λx.λy.xor (x⊕ y) gen

rnd = λx.λy.gen

To show exp =ctx rndwe first use extensionality for values so we only need
to show that for all v,u ∈Val (2)

xor (v ⊕u) gen =ctx gen

and the easiest way to do this is by using CIU equivalence. Given an evalua-
tion context E we have

P⇓ (E[xor (v ⊕u) gen]) =
1
4


P⇓ (E[xor v true])+
P⇓ (E[xor v false])+
P⇓ (E[xor u true])+
P⇓ (E[xor u false])


and by the canonical forms lemma u and v can be either true or false. It is
easy to see that the sum evaluates to

1
4

(2 ·P⇓ (E[true]) + 2 ·P⇓ (E[false]))

quickly leading to the desired conclusion.
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If we had used the logical relation directly we would not need the canon-
ical forms lemma, but then we would have to take care of step-indexing.

A similar example is when in one instance we choose to encrypt the first
plaintext and in the second instance the second one. Since the key is gener-
ated uniformly at random, the first player should not be able to distinguish
those two instances. Concretely, this is expressed as contextual equivalence
of the following two programs

exp1 = λx.λy.xor x gen

exp2 = λx.λy.xor y gen

The proof is basically the same as the one above. Use extensionality and
then CIU equivalence.

Restrictions in the free theorem are necessary

We show that the free theorem in Section 2.5 does not hold without some
assumptions on the behaviour of functions f and g.

First, if f = (λx.1)⊕ (λx.2), g is the identity function λx.x and xs is the list
[〈〉,〈〉] then the term map[][](f ◦ g)xs can reduce to the list [1,2], however the
term ((map[][]f ) ◦ (map[][]g))xs cannot. The reason is that in the first case the
reduction of f is performed for each element of the list separately, but in the
latter case, f is first reduced to a value and then the same value is applied to
all the elements of the list. Technically, the condition we need for f is that
there exists a value f ′, such that f =ctx f ′, but this version is easily derived
from the version stated above by congruence.

Second, if g diverges with a non-zero probability for some value v, we
take m to be the constant function returning the empty list and the list xs
to be the singleton list containing only the value v. Then, if f is any value,
m[][] (f ◦g)xs reduces to the empty list with probability 1, however ((m[][]f ◦
map[][]g))xs reduces to the empty list with a probability smaller than 1, since
g is still applied, since we are in a call-by-value language.

Third, if g = λx.1⊕2, f is the identity function and xs is the singleton list
containing 〈〉 we take m to be the function that first appends the given list to
itself and then applies map to it. We then have that m[][] (f ◦ g)xs can reduce
to the list [1,2], but ((m[][]f ) ◦ (map[][]g))xs cannot, since g is only mapped
over the singleton list producing lists [1] and [2], which are then appended
to themselves, giving lists [1,1] and [2,2].

And last, if m is not equivalent to a term of the form Λ.Λ.λx.e then the
term on the left reduces to two different (not equivalent) values (or even
diverges), but the term on the right does not. We can use this to construct
a distinguishing evaluation context.
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A property of map

The result in Section 2.5 does not allow us to conclude

map[][] (f ◦ g) =ctx map[][]f ◦ map[][]g.

for all f ∈ Val (σ → ρ) and g ∈ Val (τ→ σ ), however we can show, using
the definition of map, that this does in fact hold. By using extensionality
(Lemma 2.4.11) we need to show for any list xs we have

map[][] (f ◦ g)xs =ctx (map[][]f ◦ map[][]g) xs.

If f and g are values, E an evaluation context and xs a list of length n, it
is easy to see that

P⇓ (E[mapf xs]) =
∑
us

 n∏
i=1

D(f xi)(ui)

 ·P⇓ (E[us])

where the first sum is over all the lists of length n and xi and ui are the i-th
elements of lists xs and us, respectively. This then gives us that

P⇓ (E[mapf (mapg xs)])

is equal to∑
vs

 n∏
i=1

D(g xi)(vi)

 ·P⇓ (E[mapf vs])

=
∑
vs

 n∏
i=1

D(g xi)(vi)

 ·
∑
us

 n∏
i=1

D(f vi)(ui)

 ·P⇓ (E[us])


=

∑
vs

∑
us

 n∏
i=1

D(g xi)(vi) · D(f vi)(ui)

 ·P⇓ (E[us]) .

On the other hand, we have that P⇓ (E[map (f ◦ g)xs]) is equal to∑
us

 n∏
i=1

D((f ◦ g)xi)(ui)

 ·P⇓ (E[us])

and

D((f ◦ g)xi)(ui) =
∑
v

D(g xi)(v) · D(f v)(ui)

together giving us∑
us

 n∏
i=1

∑
v

D(g xi)(v) · D(f v)(ui)


 ·P⇓ (E[us])
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which by Fubini’s theorem and the fact that lists of length n correspond to
n-tuples, is equal to

∑
us

∑
vs

 n∏
i=1

(D(g xi)(vi) · D(f vi)(ui))

 ·P⇓ (E[us])

which is the same as P⇓ (E[mapf (mapg xs)]).
If f and g are not equivalent to values, then the above result for map

does not hold. Consider, for instance, f = λx.1 ⊕ λx.2 and g the identity
or conversely, when applied to the list xs = [〈〉,〈〉]. The expression map[][] (f ◦
g)xs can reduce to the list [1,2], whereas the expression (map[][]f ◦map[][]g)xs
cannot. We can generalise this to show that if f is not equivalent to a value
or g is not, then the stated equality does not hold.
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x:τ ∈ Γ
∆ | Γ ` xR x : τ ∆ | Γ ` 〈〉 R 〈〉 : 1

∆ | Γ ` e1 R e′1 : τ1 ∆ | Γ ` e2 R e′2 : τ2

∆ | Γ ` 〈e1, e2〉 R 〈e′1, e
′
2〉 : τ1 × τ2

∆ | Γ ,x:τ1 ` eR e′ : τ2

∆ | Γ ` λx.eR λx.e′ : τ1→ τ2

∆ | Γ ` eR e′ : τ1

∆ | Γ ` inleR inle′ : τ1 +τ2

∆ | Γ ` eR e′ : τ2

∆ | Γ ` inreR inre′ : τ1 +τ2

∆ | Γ ,x1:τ1 ` e1 R e′1 : τ ∆ | Γ ,x2:τ2 ` e2 R e′2 : τ ∆ | Γ ` eR e′ : τ1 +τ2

∆ | Γ ` match (e,x1.e1,x2.e2)R match (e′ ,x1.e
′
1,x2.e

′
2) : τ

∆,α | Γ ` eR e′ : τ
∆ | Γ `Λ.eRΛ.e′ : ∀α.τ

∆ ` τ1 ∆ | Γ ` eR e′ : τ[τ1/α]

∆ | Γ ` (packe)R (packe′) : ∃α.τ

∆ | Γ ` e1 R e′1 : ∃α.τ1 ∆ ` τ ∆,α | Γ ,x : τ1 ` eR e′ : τ
∆ | Γ ` (unpack e1 as x in e)R (unpack e′1 as x in e

′) : τ

∆ | Γ ` eR e′ : τ1 × τ2

∆ | Γ ` proji eR proji e′ : τi

∆ | Γ ` e1 R e′1 : τ ′→ τ ∆ | Γ ` e2 R e′2 : τ ′

∆ | Γ ` e1 e2 R e′1 e
′
2 : τ

∆ | Γ ` eR e′ : µα.τ
∆ | Γ ` unfoldeR unfolde′ : τ[µα.τ/α]

∆ | Γ ` eR e′ : τ[µα.τ/α]

∆ | Γ ` foldeR folde′ : µα.τ

∆ | Γ ` eR e′ : ∀α.τ
∆ | Γ ` e[]R e′[] : τ[τ ′/α]

ftv(τ ′) ⊆ ∆
∆ | Γ ` eR e′ : nat

∆ | Γ ` randeR rande′ : nat

∆ | Γ ` eR e′ : nat
∆ | Γ ` PeR Pe′ : nat

∆ | Γ ` eR e′ : nat
∆ | Γ ` SeR Se′ : nat

∆ | Γ ` eR e′ : nat ∆ | Γ ,` e1 R e′1 : τ ∆ | Γ ,` e2 R e′2 : τ

∆ | Γ ` if1 e then e1 else e2 R if1 e
′ then e′1 else e

′
2 : τ

Figure 2.6: Compatibility properties of type-indexed relations
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e⊕ e =ctx e e1 ⊕ e2 =ctx e2 ⊕ e1 e⊕Ω .ctx e

if e1
cf

=⇒ e2 then e1 =ctx e2 if e1 ⊕ e2 =ctx e1 then e1 =ctx e2

Figure 2.7: Basic properties of .ctx and =ctx. We write Ω for any diverging
term (i.e. P⇓ (Ω) = 0) and e⊕e′ as syntactic sugar for if1 rand2 then e else e′.
Note that the choice when evaluating e⊕ e′ is made before e and e′ are evalu-
ated.
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Abstract

We show how to construct a logical relation for countable nondetermin-
ism in a guarded type theory, corresponding to the internal logic of the
topos Sh (ω1) of sheaves over ω1. In contrast to earlier work on abstract
step-indexed models, we not only construct the logical relations in the
guarded type theory, but also give an internal proof of the adequacy
of the model with respect to standard contextual equivalence. To state
and prove adequacy of the logical relation, we introduce a new propo-
sitional modality. In connection with this modality we show why it is
necessary to work in the logic of Sh (ω1).

3.1 Introduction

Countable nondeterminism arises naturally when modelling properties of
concurrent systems or systems with user input, etc. Still, semantic models
for reasoning about must-contextual equivalence of higher-order programming

79
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languages with countable nondeterminism are challenging to construct [3,
10, 38, 60–63, 84]. Recently it was shown [23] how step-indexed logical re-
lations, indexed over the first uncountable ordinal ω1, can be used to give
a simple model of a higher-order programming language Fµ,? with recursive
types and countable nondeterminism, allowing one to reason about must-
contextual equivalence. Using step-indexed logical relations is arguably sub-
stantially simpler than using other models, but still involves some tedious
reasoning about indices, as is characteristic of any concrete step-indexed
model.

In previous work [22, 39], the guarded type theory corresponding to the
internal logic of the topos Sh (ω) of sheaves1 on ω has been proved very use-
ful for developing abstract accounts of step-indexed models indexed over
ω. Such abstract accounts eliminate much of the explicit tedious reasoning
about indices. We recall that the internal logic of Sh (ω) can be thought of as
a logic of discrete time, with time corresponding to ordinals and smaller or-
dinals being the future. In the application to step-indexed logical relations,
the link between steps in the operational semantics and the notion of time
provided by the internal logic of Sh (ω) is made by defining the operational
semantics using guarded recursion [22].

In this paper we show how to construct a logical relation for countable
nondeterminism in a guarded type theory GTT corresponding to the internal
logic of the topos Sh (ω1) of sheaves over ω1. For space reasons we only con-
sider the case of must-equivalence; the case for may-equivalence is similar.
In contrast to earlier work on abstract step-indexed models [22, 39], we not
only construct the logical relation in the guarded type theory, but also give an
internal proof of the adequacy of the model with respect to must-contextual
equivalence. To state and prove adequacy of the logical relation we intro-
duce a new propositional modality � : intuitively, �ϕ holds if ϕ holds at all
times. Using this modality we give a logical explanation for why it is neces-
sary to work in the logic of Sh (ω1): a certain logical equivalence involving
� holds in the internal logic of Sh (ω1) but not in the internal logic of Sh (ω)
(see Lemma 3.4.7).

To model must-equivalence, we follow [23] and define the logical relation
using biorthogonality. Typically, biorthogonality relies on a definition of con-
vergence; in our case, it would be must-convergence. In an abstract account
of step-indexed models, convergence would need to be defined by guarded
recursion (to show the fundamental lemma). However, that is not possible
in the logic of Sh (ω1). There are two ways to understand that. If one con-
siders the natural guarded-recursive definition of convergence,2 using Löb
induction one could show that a non-terminating computation would con-

1Considered as sheaves on the topological space ω equipped with the Alexandrov topol-
ogy.

2must-converge(e)↔∀e′ , e; e′ → .(must-converge(e′)).
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verge! Another way to understand this issue is in terms of the model. The
stratified convergence predicate ⇓β from [23] is not a well-defined subobject
in Sh (ω1). Intuitively, the reason is that all predicates in GTT are closed wrt.
the future (smaller ordinals), but if an expression converges to a value in, say,
15 computation steps, then it does not necessarily converge to a value in 14
steps. Instead we observe that the dual of stratified must-convergence, the
stratified may-divergence, is a subobject of Sh (ω1) and can easily be defined
as a predicate in GTT using guarded recursion. Thus we use the stratified
may-divergence predicate to define biorthogonality, modifying the definition
accordingly.

The remainder of the paper is organised as follows. In Section 3.2 we
explain the guarded type theory GTT, which we use to define the opera-
tional semantics of the higher-order programming language Fµ,? with count-
able nondeterminism (Section 3.3) and to define the adequate logical relation
for reasoning about contextual equivalence (Section 3.4). We include an ex-
ample to demonstrate how reasoning in the resulting model avoids tedious
step-indexing. Finally, in Section 3.5 we show that the guarded type theory
GTT is consistent by providing a model thereof in Sh (ω1). Thus, most of the
paper can be read without understanding the details of the model Sh (ω1).
Most proofs have been omitted from the paper. They can be found in the
appendices following the paper on page 98.

3.2 The Logic GTT

The logic GTT is the internal logic of Sh (ω1). In this section we explain some
of the key features of the logic; in the subsequent development we will also
use a couple of additional facts, which will be introduced as needed.

The logic is an extension of a multisorted intuitionistic higher-order logic
with two modalities . and �, pronounced “later” and “always” respectively.
Types (aka sorts) are ranged over by X, Y ; we denote the type of propositions
by Ω and the function space from X to Y as Y X . We write P (X) = ΩX for
the type of the power set of X. We think of types as variable sets (although
in the logic we will not deal with indices explicitly). There is a subset of
types which we call constant sets; given a set a, we denote by ∆(a) the type
which is constantly equal to a. Constant sets are closed under product and
function space. For each type X there is a type IX and a function symbol
nextX : X → IX. Intuitively IX is “one time step later” than the type X, so
we can only use it later, i.e. after one time step and nextX(x) freezes x for a
time step so it is only available later.

We also single out the space of total types. Intuitively, these are the types
whose elements at each stage have evolved from some elements from previ-
ous stages, i.e. they do not appear out of nowhere.
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Definition 3.2.1. For a type X we define Total (X) to mean that nextX is sur-
jective

Total (X) , ∀x : IX,∃x′ : X,nextX(x′) = x

and say that X is total when Total (X) holds. �

Note that for each X, Total (X) is a formula of the logic, but Total itself is
not a predicate of the logic. Constant sets ∆(a) for an inhabited a are total.
For simplicity, we do not formalise how to construct constant sets. In the
following, we shall instead just state for some of the types that we use that
they are constant; these facts can be shown using the model in Section 3.5.

We will adopt the usual “sequent-in-context” judgement of the form

Γ | Ξ ` ϕ

for saying that the formula ϕ is a consequence of formulas in Ξ, under the
typing context Γ .

The . modality on formulas is used to express that a formula holds only
“later”, that is, after a time step. More precisely, there is a function symbol
. : Ω → Ω which we extend to formulas by composition. We require . to
satisfy the following properties (Γ is an arbitrary context).

1. (Monotonicity) Γ | ϕ ` .ϕ

2. (Löb induction rule) Γ | (.ϕ→ ϕ) ` ϕ

3. . commutes over >, ∧,→ and ∨ (but does not preserve ⊥).

4. For all X,Y and ϕ we have Γ ,x : X | ∃y : Y ,.ϕ(x,y) ` . (∃y : Y ,ϕ(x,y)).

5. For all X,Y and ϕ we have Γ ,x : X | . (∀y : Y ,ϕ(x,y)) ` ∀y : Y ,.ϕ(x,y).
The converse entailment in the last rule holds if Y is total.

Following [22, Definition 2.8] we define a notion of contractiveness which
will be used to construct unique fixed points of morphisms on total types.

Definition 3.2.2. We define the predicate Contr on Y X as

Contr(f ) , ∀x,x′ : X,.(x = x′)→ f (x) = f (x′)

and we say that f is (internally) contractive if Contr(f ) holds. �

Intuitively, a function f is contractive if f (x) now depends only on the
value of x later, in the future. The following theorem holds in the logic.
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Theorem 3.2.3 (Internal Banach’s fixed point theorem). Internally, any con-
tractive function f on a total object X has a unique fixed point. More precisely,
the following formula is valid in the logic of Sh (ω1):

Total (X)→∀f : XX ,Contr(f )→∃!x : X,f (x) = x.

♦

We will use Theorem 3.2.3 in Section 3.4 on a function of type P (X)→
P (X) for a constant set X. We thus additionally assume that Total (P (X))
holds for any constant set X.

The �modality is used to express that a formula holds for all time steps.
It is thus analogous to the � modality in temporal logic. It is defined as the
right adjoint to the ¬¬-closure operation on formulas and behaves as an in-
terior operator. More precisely, for a formula ϕ in context Γ , �ϕ is another
formula in context Γ . In contrast to the . modality, � on formulas does not
arise from a function on Ω and consequently does not commute with sub-
stitution, i.e., in general (�ϕ) [t/x] is not equivalent to � (ϕ [t/x]), although
(�ϕ) [t/x] always implies � (ϕ [t/x]) which is useful for instantiating univer-
sally quantified assumptions. Thus, to be precise, we would have to annotate
the � with the context in which it is used. However, restricting to contexts
consisting of constant types, � does commute with substitution and since we
will only use it in such contexts we will omit explicit contexts.

The basic rules for the � modality are the following. In particular, note
the first rule which characterises � as the right adjoint to the ¬¬-closure.

Γ | ¬¬ϕ ` ψ

Γ | ϕ ` �ψ
===============

Γ | ϕ ` ψ
Γ | �ϕ ` �ψ−−−−−−−−−−−−−−−−−−

Γ | �ϕ ` ϕ−−−−−−−−−−−−−−−

Γ | �ϕ ` ��ϕ Γ | ¬¬(�ϕ) ` �ϕ Γ | ¬¬ϕ ` �(¬¬ϕ)

Note that some of the rules can be derived from others. A simple conse-
quence of the rules is that ¬¬ϕ↔ �(¬¬ϕ) and ¬¬(�ϕ)↔ �ϕ. Thus one way
to understand �ϕ is as the largest predicate that implies ϕ and is ¬¬-closed.

Proposition 3.2.4. Using the rules for � stated above we can prove the following
sequents in the logic.

Γ | ∅ ` �>↔>
Γ | ∅ ` �⊥↔⊥
Γ | ∅ ` �(ϕ ∧ψ)↔ �ϕ ∧�ψ
Γ | ∅ ` �(∀x : X,ϕ)↔∀x : X,�ϕ

Γ | ∅ ` �(ϕ→ ψ)→ �ϕ→ �ψ

♦
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τ ::= α | 1 | τ1 × τ2 | τ1 +τ2 | τ1→ τ2 | µα.τ | ∀α.τ | ∃α.τ
e ::= x | 〈〉 | 〈e1, e2〉 | inl e | inr e | λx.e |Λ.e | packe | unfolde | folde

| ? | proji e | e1 e2 | case (e,x1.e1,x2.e2) | e[] | unpack e1 as x in e2

E ::= − | 〈E,e〉 | 〈v,E〉 | inl E | inr E | packE | proji E | E e | vE | E[]

| case (E,x1.e1,x2.e2) | unpack E as x in e | unfoldE | foldE

Figure 3.1: Syntax of Fµ,?: types τ , terms e and evaluation contexts E. inl e
and inr e introduce terms of sum type. case (e,x1.e1,x2.e2) is the pattern
matching construct that eliminates a term e of the sum type with the left
branch being e1 and right branch e2. packe and unpack e1 as x in e2 intro-
duce and eliminate terms of existential types and Λ.e and e[] introduce and
eliminate terms of universal types.

A useful derived introduction rule for the � modality is the well-known
�-introduction rule for S4. It states that if we can prove ϕ using only �’ed
facts, then we can also conclude �ϕ. Formally:

Γ | Ξ ` ϕ
Γ | Ξ ` �ϕ

Ξ = �ϕ1,�ϕ2, . . . ,�ϕn

3.3 The Language Fµ,?

In this section we introduce Fµ,?, a call-by-value functional language akin
to System F, i.e., with impredicative polymorphism, existential and general
recursive types, extended with a countable choice expression ?. We work
informally in the logic outlined above except where explicitly stated.

Syntax We assume disjoint, countably infinite sets of type variables, ranged
over by α, and term variables, ranged over by x. The syntax of types, terms
and evaluation contexts is defined in Figure 3.1. Values v and contexts (terms
with a hole) C can be defined in the usual way. The free type variables in a
type ftv(τ) and free term variables in a term fv(e), are defined in the usual
way. The notation σ [~τ/ ~α] denotes the simultaneous capture-avoiding substi-
tution of types ~τ for the free type variables ~α in the type σ ; similarly, e[~v/~x]
denotes simultaneous capture-avoiding substitution of values ~v for the free
term variables ~x in e. We define the type of natural numbers as nat = µα.1+α
and the corresponding numerals as 0 = fold (inl 〈〉) and n+ 1 = fold (inr n)
by induction on n.

The judgement ∆ ` τ expresses ftv(τ) ⊆ ∆. The typing judgement ∆ |
Γ ` e : τ expresses that e has type τ in type variable context ∆ and term
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proji 〈v1,v2〉 7−→ vi unfold (foldv) 7−→ v

(λx.e)v 7−→ e[v/x] unpack (packv) as x in e 7−→ e[v/x]

(Λ.e)[] 7−→ e case (inlv,x1.e1,x2.e2) 7−→ e1[v/x1]

? 7−→ n (n ∈N) case (inrv,x1.e1,x2.e2) 7−→ e2[v/x2]

E[e]; E[e′] if e 7−→ e′

Figure 3.2: Operational semantics of Fµ,?: basic reductions 7−→ and one step
reduction;.

variable context Γ . Typing rules are the same as for system F with recursive
types, apart from the typing of the ?, which has type nat in any well-formed
context.

We write Type for the set of closed types τ , i.e. types τ satisfying ftv(τ) =
∅. We write Val (τ) and Tm (τ) for the sets of closed values and terms of type
τ , respectively. Stk (τ) denotes the set of evaluation contexts E with the hole
of type τ . The typing of evaluation contexts can be defined as in [23] by an
inductively defined relation. We write Val and Tm for the set of all closed
values and closed terms, respectively, and Stk for the set of all evaluation
contexts.

Using the model in Section 3.5, we can show that the types of terms,
values, evaluation contexts and contexts are constant sets. We use this fact in
the proof of adequacy in Section 3.4.

Operational semantics The operational semantics of Fµ,? is given in Fig-
ure 3.2 by a one-step reduction relation e; e′. The rules are standard apart
from the rule for ? which states that the countable choice expression ? eval-
uates nondeterministically to any numeral n (n ∈N). We extend basic reduc-
tion 7−→ to the single step reduction relation ; using evaluation contexts E.

To define the logical relation we need further restricted reduction rela-
tions. These will allow us to ignore most reductions in the definition of the
logical relation, except the ones needed to prove the fundamental property
(Corollary 3.4.5).

Let ;∗ be the reflexive transitive closure of ;. Following [23] we call
unfold-fold reductions those of the form unfold (foldv) 7−→ v, and choice re-
ductions those of the form ? 7−→ n (n ∈N). Choice reductions are important
because these are the only ones that do not preserve equivalence. We define

• e
p
; e′ if e;∗ e′ and none of the reductions is a choice reduction;

• e
0; e′ if e;∗ e′ and none of the reductions is an unfold-fold reduction;
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• e
1; e′ if e ;∗ e′ and exactly one of the reductions is an unfold-fold

reduction;

• e
p,0
; e′ if e

p
; e′ and e 0; e′;

• e
p,1
; e′ if e

p
; e′ and e 1; e′.

The 1; reduction relation will be used in the stratified definition of diver-
gence and the other reduction relations will be used to state additional prop-
erties of the logical relation in Lemma 3.3.1. Note that although some of the
relations are described informally using negation they can be described con-
structively in a positive way. For instance,

p
; can be defined in the same way

as the;∗ but using a subset of the one step relation;.

Divergence relations We define the logical relation using biorthogonality.
As we explained in the introduction we use two may-divergence predicates,
which are, informally, the negations of the two must-convergence relations
from [23]. Thus we define, in the logic, the stratified may-divergence predicate

7→ as the unique fixed point of Ψ : P (Tm)→P (Tm) given as

Ψ (A) =
{
e : Tm

∣∣∣∣ ∃e′ : Tm, e 1; e′ ∧ . (e′ ∈ A)
}
.

Ψ is internally contractive and since Tm is a constant set P (Tm) is total. By
Theorem 3.2.3, Ψ has a unique fixed point.

We also define the non-stratified may-divergence predicate ↑ as the great-
est fixed-point of Φ : P (Tm)→P (Tm) given as

Φ(A) =
{
e : Tm

∣∣∣ ∃e′ : Tm, e; e′ ∧ e′ ∈ A
}
.

Since Φ is monotone and P (Tm) is a complete lattice, the greatest fixed point
exists by Knaster-Tarski’s fixed-point theorem, which holds in our logic.3 Ob-
serve thatΨ is almost the same asΦ◦., apart from using a different reduction
relation. We write e↑ and e 7→ for e ∈ ↑ and e ∈ 7→, respectively.

The predicates 7→ and ↑ are closed under some, but not all, reductions.

Lemma 3.3.1. Let e,e′ : Tm. The following properties hold in the logic GTT.

if e
p
; e′ then e↑↔ e′↑ if e

p,0
; e′ then e 7→ ↔ e′ 7→

if e 0; e′ then e′ 7→ → e 7→ if e 1; e′ then . (e′ 7→)→ e 7→

♦

3Knaster-Tarski’s fixed point theorem holds in the internal language of any topos.
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Must-contextual approximation Contexts can be typed as second-order
terms, by means of a typing judgement of the form

C : (∆ | Γ V τ)# (∆′ | Γ ′V σ ),

stating that whenever ∆ | Γ ` e : τ holds, ∆′ | Γ ′ ` C[e] : σ also holds. The typ-
ing of contexts can be defined as an inductive relation defined by suitable
typing rules, which we omit here due to lack of space; see [6]. We write

C : (∆ | Γ V τ)

to mean there exists a type σ , such that

C : (∆ | Γ V τ)# (∅ | ∅V σ )

holds.
We define contextual must-approximation using the may-divergence pred-

icate. This is in contrast with the definition in [23] which uses the must-
convergence predicate. However externally, in the model, the two definitions
coincide.

Definition 3.3.2 (Must-contextual approximation). In GTT, we define must-
contextual approximation ∆ | Γ ` e1 .

ctx
⇓ e2 : τ as

∆ | Γ ` e1 : τ ∧∆ | Γ ` e2 : τ ∧∀C, (C : (∆ | Γ V τ))∧C[e2]↑→ C[e1]↑.

�

Note the order in the implication: if C[e2] may-diverges then C[e1] may-
diverges. This is the contrapositive of the definition in [23] which states that
if C[e1] must-converges then C[e2] must-converges. Must-contextual approx-
imation defined explicitly using contexts can be shown to be the largest com-
patible adequate and transitive relation, so it coincides with contextual ap- Compatible means closed

under the rules in
Figure 3.8 on page 128.

proximation in [23].

3.4 Logical Relation

In this section we give an abstract account of the concrete step-indexed logi-
cal relation from [23] by defining a logical relation interpretation of types in
GTT. The result is a simpler model without a proliferation of step-indices, as
we will demonstrate in the example at the end of the section.

Relational interpretation of types Let Type(∆) = {τ | ∆ ` τ} be the set of
types well-formed in context ∆. Given τ,τ ′ ∈ Type let

VRel (τ,τ ′) = P (Val (τ)×Val (τ ′))

TRel (τ,τ ′) = P (Tm (τ)×Tm (τ ′))

SRel (τ,τ ′) = P (Stk (τ)×Stk (τ ′)) .
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We implicitly use the inclusion VRel (τ,τ ′) ⊆ TRel (τ,τ ′). For a type variable
context ∆, we define VRel (∆) to be

{(ϕ1,ϕ2,ϕr ) | ϕ1,ϕ2 : ∆→ Type,∀α ∈ ∆,ϕr(α) ∈VRel (ϕ1(α),ϕ2(α))}

where the first two components give syntactic types for the left and right
hand sides of the relation and the third component is a relation between
those types. The interpretation of types, ~· ` ·�, is shown in Figure 3.3. The
definition is by induction on the judgement ∆ ` τ . Given a judgement ∆ ` τ ,
and ϕ ∈ VRel (∆), we have ~∆ ` τ� (ϕ) ∈ VRel (ϕ1(τ),ϕ2(τ)) where ϕ1 and ϕ2
are the first two components of ϕ, and ϕi(τ) denotes substitution of types
in ϕi for free type variables in τ . Since we are working in the logic GTT,
the interpretations of all type constructions are simple and intuitive. For in-
stance, functions are related when they map related values to related results,
two values of universal type are related if they respect all value relations. In
particular, there are no admissibility requirements on the relations, nor any
step-indexing — but just a use of . in the interpretation of recursive types, to
make it well-defined as a consequence of Theorem 3.2.3, using that the type
P (Tm×Tm) is total.

The definition of >>-closure is where we connect operational semantics
and the . modality, using the stratified may-divergence predicate 7→. >>-
closed relations are closed under some reductions. More precisely, the fol-
lowing lemma holds.

Lemma 3.4.1. Let τ,τ ′ : Type and r ∈VRel (τ,τ ′).

• If e
p,0
; e1 and e′

p
; e′1 then (e,e′) ∈ r>>↔ (e1, e

′
1) ∈ r>>.

• If e 1; e1 then for all e′ : Tm, if .((e1, e
′) ∈ r>>) then (e,e′) ∈ r>>.

♦

We use this fact extensively in the proofs of the fundamental property
and example equivalences.

In order to define logical relations, we need first to extend the interpreta-
tion of types to the interpretation of contexts (note that in particular, related
substitutions map into well-typed values):

~∆ ` Γ � (ϕ) = {(γ,γ ′) | γ,γ ′ : Valdom(Γ ),

∀x ∈ dom(Γ ) , (γ(x),γ ′(x)) ∈ ~∆ ` Γ (x)� (ϕ)}

The logical relation and its fundamental property We define the logical
relation on open terms by reducing it to relations on closed terms by substi-
tution.
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~∆ ` α� (ϕ) = ϕr(α)

~∆ ` 1� (ϕ) = Id1

~∆ ` τ1 × τ2� (ϕ) =
{

(〈v,u〉,〈v′ ,u′〉)
∣∣∣∣∣ (v,v′) ∈ ~∆ ` τ1� (ϕ)

(u,u′) ∈ ~∆ ` τ2� (ϕ)

}
~∆ ` τ1 +τ2� (ϕ) = {(inlv,inlv′) | (v,v′) ∈ ~∆ ` τ1� (ϕ)}∪

{(inru,inru′) | (u,u′) ∈ ~∆ ` τ2� (ϕ)}
~∆ ` τ1→ τ2� (ϕ) = {(λx.e,λy.e′) | ∀(v,v′) ∈ ~∆ ` τ1� (ϕ),

(e[v/x], e′[v′/y]) ∈ ~∆ ` τ2� (ϕ)>>}
~∆ ` ∀α.τ� (ϕ) = {(Λ.e,Λ.e′) | ∀σ,σ ′ ∈ Type,∀s ∈VRel (σ,σ ′) ,

(e,e′) ∈ ~∆,α ` τ� (ϕ
[
α 7→ (σ,σ ′ , s)

]
)>>}

~∆ ` ∃α.τ� (ϕ) = {(packv,packv′) | ∃σ,σ ′ ∈ Type,∃s ∈VRel (σ,σ ′) ,

(v,v′) ∈ ~∆,α ` τ� (ϕ
[
α 7→ (σ,σ ′ , s)

]
)}

~∆ ` µα.τ� (ϕ) = fix
(
λs.

{
(foldv,foldv′) |

. ((v,v′) ∈ ~∆,α ` τ� (ϕ [α 7→ s]))

})
where the

·>> : VRel (τ,τ ′)→ TRel (τ,τ ′)

is defined with the help of

·> : VRel (τ,τ ′)→ SRel (τ,τ ′)

as follows

r> = {(E,E′) | ∀(v,v′) ∈ r,E′[v′]↑→ E[v] 7→}
r>> = {(e,e′) | ∀(E,E′) ∈ r>,E′[e′]↑→ E[e] 7→}.

Figure 3.3: Interpretation of types. All the relations are on typeable terms
and contexts.

Definition 3.4.2 (Logical relation). ∆ | Γ ` e1 .
log
⇓ e2 : τ if

∀ϕ ∈VRel (∆) ,∀(γ,γ ′) ∈ ~∆ ` Γ � (ϕ), (e1γ,e2γ
′) ∈ ~∆ ` τ� (ϕ)>>.

�

To prove the fundamental property of logical relations and connect the
logical relation to contextual-must approximation we start with some sim-
ple properties relating evaluation contexts and relations. All the lemmas are
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essentially of the same form: given two related evaluation contexts at a suit-
able type, the contexts extended with an elimination form are also related at
a suitable type. We only state the case for unfold , since it shows the interplay
between unfold-fold reductions and the stratified may divergence predicate.

Lemma 3.4.3. If

(E,E′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)>

then

(E ◦ (unfold []),E′ ◦ (unfold [])) ∈ ~∆ ` µα.τ� (ϕ)>.

♦

Proof. Given (foldv,foldv′) ∈ ~∆ ` µα.τ� (ϕ) suppose E′ [unfold (foldv′)]↑.
By Lemma 3.3.1 we have E′ [v′]↑ and so .(E′[v′]↑). By definition of interpreta-
tion of recursive types we have . ((v,v′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)). Thus .(E[v] 7→)
and so by Lemma 3.3.1 we have E[unfold (foldv)] 7→. QED

Note that the proof would not work, were we to use the ↑ relation in place
of 7→ in the definition of the >> closure since the last implication would not
hold.

Proposition 3.4.4. The logical approximation relation is compatible with the typ-
ing rules (see also Proposition 3.B.21). ♦

Proof. We only give two cases, to show how to use the context extension lem-
mas.
Elimination of recursive types: we need to show

∆ | Γ ` e .log
⇓ e′ : µα.τ

∆ | Γ ` unfolde .log
⇓ unfolde

′ : τ[µα.τ/α]
.

So take ϕ ∈ VRel (∆) and (γ,γ ′) ∈ ~∆ ` Γ � (ϕ). Let f = eγ and f ′ = e′γ ′. We
have to show (unfoldf ,unfoldf ′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)>>. So take

(E,E′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)>.

By assumption (f , f ′) ∈ ~∆ ` µα.τ� (ϕ)>> so it suffices to show

(E ◦ (unfold []),E′ ◦ (unfold [])) ∈ ~∆ ` µα.τ� (ϕ)>

and this is exactly the content of Lemma 3.4.3.
The ? expression: we need to show ∆ | Γ ` ? .log

⇓ ? : nat. It is easy to see by
induction that for all n ∈ N, (n,n) ∈ ~` nat�. So take (E,E′) ∈ ~` nat�> and
assume E′[?]↑. By definition of the ↑ relation there exists an e′, such that
?; e′ and E′[e′]↑. Inspecting the operational semantics we see that e′ = n for
some n ∈N. This implies E[n] 7→ and so by Lemma 3.3.1 we have E[?] 7→. QED
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Corollary 3.4.5 (Fundamental property of logical relations). If ∆ | Γ ` e : τ
then ∆ | Γ ` e .log

⇓ e : τ ♦

Proof. The proof is by induction on the typing derivation ∆ | Γ ` e : τ using
Proposition 3.4.4. QED

We need the next corollary to relate the logical approximation relation to
must-contextual approximation.

Corollary 3.4.6. For any expressions e,e′ and context C, if

∆ | Γ ` e .log
⇓ e′ : τ

and

C : (∆ | Γ V τ)# (∆′ | Γ ′V σ )

then

∆′ | Γ ′ ` C[e] .log
⇓ C[e′] : τ ′ .

♦

Proof. By induction on the judgement

C : (∆ | Γ V τ)# (∆′ | Γ ′V σ )

using Proposition 3.4.4. QED

Adequacy We now wish to show soundness of the logical relation with re-
spect to must-contextual approximation. However, the implication

∆ | Γ ` e .log
⇓ e′ : τ→ ∆ | Γ ` e .ctx

⇓ e′ : τ

does not hold, due to the different divergence relations used in the definition
of the logical relation. To see precisely where the proof fails, let us attempt
it. Let ∆ | Γ ` e .log

⇓ e′ : τ and take a well-typed closing context C with result

type σ . Then by Corollary 3.4.6, ∅ | ∅ ` C[e] .log
⇓ C[e′] : σ . Unfolding the def-

inition of the logical relation we get (C[e],C[e′]) ∈ ~∅ ` σ�>>. It is easy to see
that (−,−) ∈ ~∅ ` σ�> and so we get by definition of >> that C[e′]↑ → C[e] 7→.
However the definition of contextual equivalence requires the implication
C[e′]↑→ C[e]↑, which is not a consequence of the previous one.

The gist of the problem is that ↑ defines a time-independent predicate,
whereas 7→ is time-dependent, since it is defined by guarded recursion. How-
ever, in the model in Section 3.5, we can show the validity of a formula ex-
pressing a connection between ↑ and 7→:
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Lemma 3.4.7. e : Tm | ∅ ` �(e 7→)→ e↑ holds in the logic GTT. ♦

Thus we additionally assume this principle in our logic. Note that this
lemma is not valid in the logic of the topos of trees [22] and this is the reason
we must work in the logic of Sh (ω1). We sketch a proof of the lemma at the
end of Section 3.5 which shows the role of � and why the lemma does not
hold in the topos of trees. Using Lemma 3.4.7 we are led to the following
corrected statement of adequacy using the �modality.4

Theorem 3.4.8 (Adequacy). If e and e′ are of type τ in context ∆ | Γ then
�(∆ | Γ ` e .log

⇓ e′ : τ) implies ∆ | Γ ` e .ctx
⇓ e′ : τ . ♦

To prove this theorem we first observe that all the lemmas used in the
proof of Corollary 3.4.6 are proved in constant contexts, using only other
constant facts. Hence, Corollary 3.4.6 can be strengthened, yielding the fol-
lowing restatement.

Proposition 3.4.9.

�

 ∀∆,∆′ ,Γ ,Γ ′ , τ,σ ,C,e, e′ ,C : (∆ | Γ V τ)# (∆′ | Γ ′V σ )

→ ∆ | Γ ` e .log
⇓ e′ : τ→ ∆′ | Γ ′ ` C[e] .log

⇓ C[e′] : τ ′

 .
♦

Note that all the explicit universal quantification in the proposition is
over constant types. One additional ingredient we need to complete the
proof is the fact that ↑ is ¬¬-closed, i.e. e↑ ↔ ¬¬(e↑). We can show this
in the logic using the fact that ↑ is the greatest post-fixed point by showing
that ¬¬↑ is another one. This fact further means that �(e↑)↔ (e↑) (using the
adjoint rule relating ¬¬ and � in Section 3.2). We are now ready to proceed
with the proof of Theorem 3.4.8.

Theorem 3.4.8. Continuing the proof we started above we get, using Proposi-
tion 3.2.4, that �(C[e′]↑ → C[e] 7→) and thus also �(C[e′]↑)→ �(C[e] 7→). More-
over, �(C[e′]↑) ↔ C[e′]↑ and, by Lemma 3.4.7, �(C[e] 7→) → C[e]↑. We thus
conclude C[e′]↑→ C[e]↑, as required. QED

Thus, if we can prove that e and e′ are logically related relying only on
constant facts we can use this theorem to conclude that e must-contextually
approximates e′. In particular, the fundamental property (Corollary 3.4.5)
can be strengthened to a “boxed” statement.

4Readers who are familiar with concrete step-indexed models will note that the �modal-
ity captures the universal quantification over all steps used in the the definition of concrete
step-indexed logical relations.
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Completeness As in [23] we also get completeness with respect to contex-
tual approximation. The proof proceeds as in [23] via the notion of CIU-
approximation [23, 67]. This property relies on the fact that we have built
the logical relation using biorthogonality and using typeable realisers.

Theorem 3.4.10. For any ∆, Γ , e, e′ and τ ,

∆ | Γ ` e .CIU
⇓ e′ : τ↔ ∆ | Γ ` e .ctx

⇓ e′ : τ↔ �(∆ | Γ ` e .log
⇓ e′ : τ)

♦

Applications

We can now use the logical relation to prove contextual equivalences. In
Section 3.B on page 135 we provide internal proofs of all the examples done
in the concrete step-indexed model in [23]; these proofs are simpler than
the ones in [23]. In this section we include just one example, the proof of
syntactic minimal invariance for must-equivalence. Remarkably, the proof
below is just as simple as the proof of the minimal invariance property in
the abstract account of a step-indexed model for the deterministic language
Fµ [39].

Let

fix : ∀α,β.((α→β)→(α→β))→ (α→β)

be the term

Λ.Λ.λf .δf (foldδf )

where δf is the term

λy.let y′ = unfoldy in f (λx.y′ y x).

Consider the type τ = µα.nat + α → α. Let id = λx.x and consider the
term

f ≡ λh,x.case (unfoldx,y.fold (inly), g.fold (inrλy.h(g(hy)))) .

We show that fix[][]f .log
⇓ id : τ → τ . The other direction is essentially the

same. Since we prove this in the context of constant facts we can use Theo-
rem 3.4.10 to conclude that the terms are contextually equivalent.

We show by Löb induction that (fix[][]f , id) ∈ ~τ→ τ�>>. It is easy to see

that fix[][]f
p,1
; λx.case (unfoldx,y.fold (inly), g.fold (inrλy.h(g(hy))))

where h = λx.δf (foldδf )x. Let

ϕ = λx.case (unfoldx,y.fold (inly), g.fold (inrλy.h(g(hy)))) .

We now directly show (ϕ, id) ∈ ~τ→ τ� which suffices by Lemma 3.4.1.
Let us take (u,u′) ∈ ~τ�. By the definition of the interpretation of recur-

sive and sum types there are two cases:
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• u = fold (inln) and u′ = fold (inln) for some n ∈N: immediate.

• u = fold (inrg), u′ = fold (inrg ′) for some g,g ′ such that .((g,g ′) ∈
~τ→ τ�). We then have that

ϕu
p,1
; fold (inrλy.h(g(hy)))

and idu′
p
; u′ and so it suffices to show

. (λy. (h(g(hy)), g ′) ∈ ~τ→ τ�) .

We again show that these are related as values so take .((v,v′) ∈ ~τ�)
and we need to show

.
(
(h(g(hv)), g ′ v′) ∈ ~τ�>>

)
.

Take .((E,E′) ∈ ~τ�>). Löb induction hypothesis gives us that

.((h′ , id) ∈ ~τ→ τ�>>),

where h′ is the body of h, i.e h = λx.h′ x. It is easy to see that this implies

.((h, id) ∈ ~τ→ τ�>>)

and so by extending the contexts three times using lemmas analogous
to Lemma 3.4.3 we get

.
(
(E[h (g (h []))],E′[g ′ []]) ∈ ~τ�>

)
.

So, assuming .(E′[g ′ v′]↑) we get .(E[h (g (hv))] 7→), concluding the proof.

3.5 The Model for GTT

In this section, we present a model for the logic GTT, where all the properties
we have used in the previous sections are justified. The model we consider is
the topos of sheaves over the first uncountable ordinalω1 (in fact, any ordinal
α ≥ ω1 would suffice). We assume some basic familiarity with topos theory,
on the level described in [66]. We briefly recall the necessary definitions.

The objects of Sh (ω1) are sheaves over ω1 considered as a topological
space equipped with the Alexandrov topology. Concretely, this means that
objects of Sh (ω1) are continuous functors from (ω1 + 1)op to Set. We think
of ordinals as time, with smaller ordinals being the future. The restriction
maps then describe the evolution of elements through time.

Sh (ω1) is a full subcategory of the category of presheaves PSh (ω1 + 1).
The inclusion functor i has a left adjoint a : PSh (ω1 + 1) → Sh (ω1) called
the associated sheaf functor. Limits and exponentials are constructed as in
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presheaf categories. Colimits are not constructed pointwise as in presheaf
categories, but they require also the application of the associated sheaf func-
tor.

There is an essential geometric morphism

Π1 a ∆ a Γ : Sh (ω1)→ Set,

with ∆ the constant sheaf functor, Γ the global sections functor and Π1(X) =
X(1) the evaluation at 1 (we consider 0 to be the first ordinal). Given a set a,
the constant sheaf ∆(a) is not the constant presheaf: rather it is equal to the
singleton set 1 at stage 0, and to a at all other stages.

For a sheaf X, an element ξ ∈ X(ν) and β ≤ ν we write ξ |β for the restric-
tion X(β ≤ ν)(ξ).

Analogously to the topos of trees [22], there is a “later” modality on types,
i.e. a functor I : Sh (ω1)→ Sh (ω1) defined as (we consider 0 a limit ordinal)

IX(ν + 1) = X(ν), IX(α) = X(α) for α limit ordinal.

There is an obvious natural transformation nextX : X→ IX.
The subobject classifier Ω is given by Ω(ν) = {β | β ≤ ν} and its restriction

maps are given by minimum. There is a natural transformation . : Ω→ Ω

given as .ν(β) = min{β + 1,ν}.

Kripke-Joyal semantics [59] is a way to translate formulas in the logic to
statements about objects and morphisms of Sh (ω1); we refer to [66, Section
VI.5] for a detailed introduction and further references. We now briefly ex-
plain the Kripke-Joyal semantics of GTT.

Let X be a sheaf and ϕ,ψ formulas in the internal language with a free
variable of type X. Intuitively, for an ordinal ν and an element ξ ∈ X(ν),
ν 
 ϕ(ξ) means that ϕ holds for ξ at stage ν. A formula ϕ is valid if it holds
for all ξ and at all stages.

Let ν ≤ω1 and ξ ∈ X(ν). The rules of Kripke-Joyal semantics are the usual
ones (see, e.g., [66, Theorem VI.7.1]), specialised for our particular topology:

• ν 
⊥ iff ν = 0;

• ν 
> always;

• ν 
 ϕ(t)(ξ) iff ~ϕ�ν (~t�ν(ξ)) = ν, for a predicate symbol ϕ on X;

• ν 
 ϕ(ξ)∧ψ(ξ) iff ν 
 ϕ(ξ) and ν 
 ψ(ξ);

• ν 
 ϕ(ξ)∨ψ(ξ) iff ν 
 ϕ(ξ) or ν 
 ψ(ξ);

• ν 
 ϕ(ξ)→ ψ(ξ) iff for all β ≤ ν,β 
 ϕ(ξ |β) implies β 
 ψ(ξ |β);

• ν 
 ¬ϕ(ξ) iff for all β ≤ ν,β 
 ϕ(ξ |β) implies β = 0.
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Note that 0 
 ϕ for any ϕ, as is usual in Kripke-Joyal semantics for
sheaves over a space: intuitively, the stage 0 represents the impossible world.
Moreover, if ϕ is a formula with free variables x : X and y : Y , ν ≤ ω1 and
ξ ∈ X(ν) then:

• For ν a successor ordinal: ν 
 ∃y : Y ,ϕ(ξ,y) iff there exists ξ ′ ∈ Y (ν)
such that ν 
 ϕ(ξ,ξ ′);

• For ν a limit ordinal: ν 
 ∃y : Y ,ϕ(ξ,y) iff for all β < ν there exists
ξβ ∈ Y (β) such that β 
 ϕ(ξ |β ,ξβ);

• ν 
 ∀y : Y ,ϕ(ξ,y) iff for all β ≤ ν and for all ξβ ∈ Y (β): β 
 ϕ(ξ |β ,ξβ).

The semantics of . is as follows. Let ϕ be a predicate on X, then

ν 
 .ϕ(α) iff for all β < ν,β 
 ϕ(α|β).

For successor ordinals ν = ν′ + 1 this reduces to

ν + 1 
 .ϕ(α) iff ν′ 
 ϕ(α|ν′ ).

The predicate Total (X) in Definition 3.2.1 internalises the property that
all X’s restriction maps are surjections which intuitively means that elements
at any stage β evolve from elements in the past. Total sheaves are also called
flabby in homological algebra literature, but we choose to use the term to-
tal since it was used in previous work on guarded recursion to describe an
analogous property.

The properties of . stated in Section 3.2 can be proved easily using the
Kripke-Joyal semantics. The rules are similar to the rules in Theorem 2.7
of [22], except the case of the existential quantifier in which the converse
implication does not hold, even if we restrict to total and inhabited types,
or even to constant sets. As a consequence, we cannot prove the internal
Banach’s fixed point theorem in the logic in the same way as in the topos of
trees, cf. [22, Lemma 2.10].

In contrast to that in the topos of trees [22, Theorem 2.9], which requires
the type X only to be inhabited, the internal Banach’s fixed point theorem in
Sh (ω1) (Theorem 3.2.3) has stronger assumptions: we require X to be total,
which implies that it is inhabited. The additional assumption seems to be
necessary and is satisfied in all the instances where we use the theorem. In
particular, for a constant X, P (X) is total.

The operator ¬¬ : Ω → Ω gives rise to a function ¬¬X on the lattice of
subobjects Sub (X). In Sh (ω1), ¬¬X preserves suprema5 on each Sub (X) and
therefore has a right adjoint �X : Sub (X)→ Sub (X) defined as

�X P =
∨
{Q | ¬¬Q ≤ P } .

5Recall that this is not the case in every topos.
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If X = ∆(a) then �X P has a simpler description:

�∆(a)(P )(ν) =

1 if ν = 0⋂ω1
β=1 P (β) otherwise.

Thus for a predicate P on a constant set ∆(a), �(P ) contains only those ele-
ments for which P holds at all stages.

However, in contrast to ¬¬which commutes with reindexing, � does not.
There is a general reason for this: in any category with pullbacks, any defla-
tionary operation � that preserves the top element and is natural, i.e. com-
mutes with reindexing, is necessarily the identity [82, Proposition 4.2]. How-
ever

∆(f )∗
(
�∆(a) (P )

)
= �∆(b) (∆(f )∗ (P ))

for any f : a→ b in Set and since ∆ preserves products we do get that � in
the logic commutes with substitution when restricted to constant contexts.

The external interpretation of ↑ is exactly the negation of the must-con-
vergence predicate ⇓ from [23]. In particular, ↑ is a constant predicate. In
contrast, 7→(ν) is a set of expressions e such that there exists a reduction of
length at least ν starting with e. This can easily be seen using the description
of Kripke-Joyal semantics above. Thus, 7→ is externally the pointwise comple-
ment of the stratified must-convergence predicate {⇓β}β<ω1

from [23]. Then,
the proof that � 7→ → ↑ corresponds to the proof that ⇓⊆

⋃
β<ω1

⇓β in [23].
Here we technically see the need for indexing over ω1.
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3.A The Topos Sh (ω1)

We first describe the topos of sheaves over ω1, the first uncountable ordinal.
To be completely precise, we consider ω1 as a topological space equipped
with the Alexandrov topology arising from the usual ordering of ordinals.
Thus the topos Sh (ω1) is a full subcategory of the category PSh (ω1 + 1), since
the opens ofω1 are exactly the downwards closed subsets ofω1 which in turn
correspond precisely to ω1 + 1 (by von Neumann’s construction of ordinals,
they are exactly ω1 + 1). We write 0 for the first ordinal. So objects are of the
form

X(0) X(1) · · · X(ω) X(ω+ 1) · · ·

but not all such chains are sheaves. Sheaves are precisely the continuous
functors from (ω1 + 1)op to Set and morphisms are natural transformations.

Sh (ω1) is a topos. The inclusion functor i : Sh (ω1)→ PSh (ω1 + 1) has a
left adjoint a, the associated sheaf functor. Limits and exponentials in Sh (ω1)
are computed as in PSh (ω1 + 1), i.e. limits are pointwise and exponential XY

is given at stage ν as

HomSh(ω1)

(
Homω1+1 (·,ν)×Y ,X

)
.

Colimits, however, are not constructed as in presheaves, but are computed
first as in presheaves followed by an application of the associated sheaf func-
tor a.

We denote the lattice of subobjects of an object X by Sub (X) and we de-
note reindexing along f : X → Y by f ∗ : Sub (Y ) → Sub (X). Since Sh (ω1)
is a topos, each subobject lattice is a complete Heyting algebra. Further, we
can show that each subobject lattice is in fact a bi-Heyting algebra, that is,
a Heyting algebra with a \ operation that is left adjoint to disjunction, i.e.,
X \ Y ≤ Z ↔ X ≤ Y ∨ Z. The existence of \ can be shown by using explicit
descriptions of operations on the subobject lattice below. This operation is
related to the �modality and it makes Sh (ω1) a bi-Heyting topos [82].

Subobject classifier The subobject classifier Ω is given by closed sieves,
which are exactly the maximal sieves. More precisely the subobject classifier
at ν is given by sieves S such that

∨
S ∈ S. These sieves therefore correspond

to ordinals smaller or equal to ν. Explicitly

Ω(ν) = {β
∣∣∣ β ≤ ν}

(note that von Neumann’s construction of ordinals gives Ω(ν) = ν + 1).
The restriction maps are given by minimum, i.e.

r
β
ν :Ω(β)→Ω(ν)

r
β
ν (γ) = min{β,ν}
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and the map true : 1→Ω maps ∗ to the maximal sieve

trueν = ν.

Note that this is different from the construction of the subobject classifier for
presheaves, where Ω(ν) is all the sieves on ν, including the empty sieve.

Given a subobject m : A ≤ X the characteristic map χm : X → Ω is given
by

χmν (x) =
∨{

β ≤ ν
∣∣∣∣m−1

β

[
x|β

]
, ∅

}
i.e. (if we assume A(ν) ⊆ X(ν), which we are allowed to)

χmν (x) =
∨{

β ≤ ν
∣∣∣ x|β ∈ A(β)

}
.

Note that the supremum of an empty set is 0, the first ordinal, which is an
element of all Ω(ν), so the characteristic map is well-defined.

Some of the properties later will not hold for all the sheaves but only for
a certain subset.

Definition 3.A.1. A sheafX is total if the restriction maps are surjections. �

A way to think of totality is by thinking of ordinals as time with smaller
ordinals being the future. Then X being total means that elements at any
stage ν are only those that have evolved from some previous stages. They
did not just suddenly appear.

Being total can also be characterised internally by the property that the
function nextX is internally surjective. The equivalence of these two notions
of totality can be shown using the Kripke-Joyal semantics.

Relationship to Set

The global sections geometric morphism ∆ ` Γ : Sh (ω1)→ Set is an essential
geometric morphism. That is, there is an adjoint triple

Π1 a ∆ a Γ

where Π1,Γ : Sh (ω1)→ Set and ∆ : Set→ Sh (ω1) are given as follows

Π1(X) = X(1) = colim
ν≤ω1

X(ν)

Γ (X) = HomSh(ω1) (1,X) = lim
ν≤ω1

X(ν) = X(ω1)

∆(a)(ν) =

1 if ν = 0

a otherwise
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∆ is the constant sheaf functor. Note that it is not the constant presheaf
functor.

The adjunction Π1 a ∆ gives rise to an adjunction between subobject lat-
tices. More precisely for any set a, there is an adjunction

Πa
1 : SubSh(ω1) (∆(a))→ SubSet (a) : ∆a

where ∆a(b) = ∆(b) and Πa
1(A) = A(1). These adjunctions are natural in the

sense that for any function α : a′ → a we have α∗ ◦Πa
1 = Πa′

1 ◦∆(α)∗, which is
easy to check directly.

Thus, ∆ a Γ : Sh (ω1) → Set is an open geometric morphism [66, Def-
inition IX.6.2] which further means that ∆ preserves models of first-order
logic in the sense of [66, Theorem X.3.1]. In practice, this means that what-
ever predicate on a constant set we define in the internal logic using only
the first-order fragment and other constant relations and predicates will be
constant.

Another way to see that ∆ a Γ is an open geometric morphism is by the
fact that Sh (1) (sheaves on a one point space) is isomorphic to the category
Set. Since the unique map ω1→ 1 is open, the induced geometric morphism
is open. It can easily be seen that the direct image functor induced by this
unique morphism is (isomorphic to) Γ . By uniqueness of adjoints the inverse
image functor must then be (isomorphic to) ∆.

Moreover,Π1 is a logical morphism, meaning it is a cartesian closed func-
tor that preserves Ω. This is easy to see manually, by computing. However,
there is a more general argument available. It proceeds as follows. The
set {0} is an open subset of ω1. Let i : {0} → ω1 be the inclusion and let
i∗ : Sh ({0})→ Sh (ω1) be the direct image functor. Recall that

i∗(F)(U ) = F
(
i−1 [U ]

)
and in our particular case we have

i∗(F)(ν) =

F(∅) if ν = 0

F({0}) if ν , 0

Recall that Sh ({0}) is isomorphic to Set with the isomorphism ξ : Set →
Sh ({0}) given by ξ(a)(∅) = 1, ξ(a)({0}) = a and the obvious restriction. Thus
we see that ∆ = i∗ ◦ ξ. The inverse image functor i∗ is left adjoint to i∗. Since
we also have ξ ◦Π1 a ∆◦ξ−1 we have that i∗ is naturally isomorphic to ξ ◦Π1
or equivalently Π1 � ξ

−1 ◦ i∗.
Since {0} is an open subset of Sh (ω1) this makes Set (equivalent to) an

open subtopos of Sh (ω1) [53, Section A4.5].
Moreover, we have by [66, Theorem 6, Corollary 7] that Set is equivalent

to a category of j-sheaves for some universal closure operator j. We will see
in Section 3.A that this local operator is exactly the ¬¬-closure. Thus there
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exists a geometric morphism e : Set→ Shj (Sh (ω1)) such that e∗ ◦ a �Π1 and
ι ◦ e∗ � ∆ where ι is the inclusion Shj (Sh (ω1))→ Sh (ω1).

Putting all of it together we have Shj (Sh (ω1)) is an open subtopos of
Sh (ω1) since it is equivalent to Set which is equivalent to Sh ({0}). By [53,
Proposition 4.5.1] this means that a : Sh (ω1)→ Shj (Sh (ω1)) is a logical func-
tor and since Π1 � e

∗ ◦ a, with e∗ being part of an equivalence, which means
that it is a logical functor, we have that Π1 is logical.

This means that Π1 preserves validity of formulas in the internal lan-
guage.

Description of the Heyting algebra structure of the subobject
lattices

We give here explicit descriptions of operations on each subobject lattice
Sub (X). Let X ∈ Sh (ω1), A,B ∈ Sub (X) and β ≤ω1. We have

> = X

⊥(β) =

1 if β = 0

∅ otherwise

(A∧B)(β) = A(β)∩B(β)∧
i∈I
Ai

 (β) =
⋂
i∈I
Ai(β)

(A⇒ B)(β) =
{
x ∈ X(β)

∣∣∣ ∀γ ≤ β,x|γ ∈ A(γ)→ x|γ ∈ B(γ)
}∨

i∈I
Ai

 (β) =
{
x ∈ X(β)

∣∣∣∣ ∨{
γ ≤ β

∣∣∣ ∃i ∈ I,x|γ ∈ Ai(γ)
}

= β
}

Let further Y ∈ Sh (ω1) and ϕ : X → Y . Then ∃ϕ ,∀ϕ : Sub(X)→ Sub(Y )
are given by the following equations

∃ϕ(A)(β) =
{
y ∈ Y (β)

∣∣∣∣ ∨{
γ ≤ β

∣∣∣∣ ∃a ∈ A(γ),ϕγ (a) = y|γ
}

= β
}

∀ϕ(A)(β) =
{
y ∈ Y (β)

∣∣∣∣ ∀γ ≤ β,ϕ−1
γ

[
y|γ

]
⊆ A(γ)

}
and ϕ∗ : Sub(Y )→ Sub(X) is given by

ϕ∗(C)(β) =
{
x ∈ X(β)

∣∣∣ ϕβ(x) ∈ C(β)
}

These are standard results from [66, III.8] specialised for a particular space
with a particular topology.



102 A Model of Countable Nondeterminism in Guarded Type Theory

Using these descriptions it is easy to see that the ¬¬X : Sub (X)→ Sub (X)
is given as follows

(¬¬XA)(ν) =

1 if ν = 0

{x ∈ X(ν) | x|1 ∈ A(1)}

(intuitively, this says that something is not impossible if it will eventually
happen (smaller indices are the future)). Observe that in fact

¬¬XP =UX → P

where UX ≤ X is given as UX(0) = 1, UX(1) = X(1) and UX(ν) = ∅ otherwise.
This means that ¬¬ is an open local operator [53, Section 4.5].

From these explicit descriptions we can see that¬¬X arises from the func-
tor ∆ ◦Π1 as follows. Let � = ∆ ◦Π1. Note that � a ∆ ◦ Γ which means that
it preserves all colimits. It is easy to see that � preserves all limits since they
are constructed pointwise. We will also see in Section 3.A that it has a left
adjoint which implies that it preserves all limits. In particular it preserves
monomorphisms, thus subobjects. Hence given a subobject m : A ≤ X we
have a subobject �m : �A ≤ �X. Further, � is a monad, thus there is a unit
ηX : X→ �X. It is then easy to see that

¬¬A �A

X �X

y
�m

ηX

is a pullback diagram. Another way to state this is that ¬¬X : Sub (X) →
Sub (X) is given as ¬¬X(A) = η∗X (�A).

Using this description we can easily see that ¬¬X preserves suprema. In-
deed

¬¬X

∨
i

Ai

 = η∗X

�
∨
i

Ai




and since suprema in Sub (X) are constructed using a coproduct in Sh (ω1)
followed by images, which are in turn constructed using limits and colimits
of Sh (ω1), which are preserved by �, we have

= η∗X

∨
i

�Ai


and since η∗X : Sub (X) → Sub (X) has a right adjoint, the generalised forall
quantifier ∀ηX , it preserves suprema, hence

=
∨
i

η∗X (�Ai) =
∨
i

¬¬XAi .
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Note that as in all toposes, ¬¬ is preserved by reindexing functors, i.e.
for any ϕ : X→ Y , ϕ∗ ◦¬¬Y = ¬¬X ◦ϕ∗.

We can also easily compute manually using explicit descriptions of oper-
ations above, that ¬¬X does indeed preserve suprema.

The �modality

Since ¬¬X preserves suprema it has a right adjoint [12, Corollary 9.32]. We
denote this right adjoint to ¬¬X by �X . It can be defined as

�X(P ) =
∨
{Q | ¬¬XQ ≤ P } .

�X is an interior operation on the subobject lattice Sub (X) and �X P it
can be characterised as the greatest element smaller than P that is also ¬¬X
closed. The fact that �X P is ¬¬-closed is proved in Lemma 3.A.2 and the fact
that it preserves ¬¬-closed subobjects is proved in Corollary 3.A.4.

Lemma 3.A.2. For any object X and subobject P ≤ X, ¬¬X �X(P ) = �X(P ). ♦

Proof. By definition of �X we have

¬¬X (�X(P )) = ¬¬X
(∨
{Q | ¬¬XQ ≤ P }

)
and since ¬¬X preserves suprema

=
∨
{¬¬XQ | ¬¬XQ ≤ P } =

∨
{Q | ¬¬XQ ≤ P } = �X(P )

The second to last equality holds because for eachQ, we have ¬¬XQ ≥Q and
¬¬X¬¬XQ = ¬¬XQ. QED

Corollary 3.A.3. For any object X and subobject P ≤ X, we have �X P ≤ P . ♦

Proof. Since ¬¬X a �X we have �X P ≤ �X P ↔ ¬¬X �X P ≤ P . Lemma 3.A.2
concludes the proof. QED

Corollary 3.A.4. For any object X and P ≤ X, �X(¬¬XP ) = ¬¬XP . ♦

Proof. For any P , ¬¬X¬¬XP = ¬¬XP . Thus ¬¬X¬¬XP ≤ ¬¬XP . Since �X is
right adjoint to ¬¬X we get ¬¬XP ≤ �X ¬¬XP . The other direction follows
directly from Corollary 3.A.3. QED

Corollary 3.A.5. For any object X and subobject P ≤ X, �X(�X P ) = �X P . ♦

Proof. �X(�X P ) ≤ �X P follows from Corollary 3.A.3. The other direction
follows from the fact that �X is right adjoint to ¬¬X and Lemma 3.A.2 since
by adjointness we have �X P ≤ �X �X P ↔ ¬¬X �X P ≤ �X P and the right
hand side holds by Lemma 3.A.2. QED
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We now state and prove how �X commutes with some other operations
on Sub (X). In particular, it commutes with conjunction, top, bottom and
universal quantification.

Proposition 3.A.6. Let X and Y be types, P ,Q ∈ Sub (X) and ϕ : X → Y a
morphism. The following hold

1. �X> =>

2. �X⊥ =⊥

3. �X(P ∧Q) = �X P ∧�XQ

4. �Y
(
∀ϕP

)
= ∀ϕ (�X P ).

♦

Proof. Since �X is a right adjoint it preserves limits in Sub (X). > and ∧ are
limits, therefore �X necessarily preserves them.

Corollary 3.A.3 shows that �X P ≤ P for any P . In particular, this holds
for ⊥ and since ⊥ is the least element of Sub (X), we get �X⊥ =⊥.

To see �Y
(
∀ϕP

)
= ∀ϕ (�X P ) we use the fact that ∀ϕ is right adjoint to ϕ∗

and that ϕ∗ commutes with ¬¬X . Thus for any R ∈ Sub (Y ) we have

R ≤ �Y
(
∀ϕP

)
↔¬¬YR ≤ ∀ϕP

↔ ϕ∗ (¬¬YR) ≤ P
↔¬¬X (ϕ∗R) ≤ P
↔ ϕ∗R ≤ �X P
↔ R ≤ ∀ϕ (�X P )

Thus picking R to be �Y
(
∀ϕP

)
or ∀ϕ (�X P ) we get both approximations, and

hence the equality

�Y
(
∀ϕP

)
= ∀ϕ (�X P ) .

QED

� and substitution In contrast to ¬¬X which is preserved by reindexing
functors, �X is not, that is, for ϕ : Y → X it is not in general the case that
�Y ◦ϕ∗ = ϕ∗ ◦�X . One direction, however, does hold.

Proposition 3.A.7. For any ϕ : Y → X,

ϕ∗ ◦�X ≤ �Y ◦ϕ∗.

If ϕ is an isomorphism then the two sides are also equal. ♦
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Proof. By definition of �X and the fact that ϕ∗ has a right adjoint we have

ϕ∗(�X(P )) = ϕ∗
(∨
{Q | ¬¬XQ ≤ P }

)
=

∨
{ϕ∗Q | ¬¬XQ ≤ P }

≤
∨
{ϕ∗Q | ϕ∗ (¬¬XQ) ≤ ϕ∗(P )}

=
∨
{ϕ∗Q | ¬¬Y (ϕ∗Q) ≤ ϕ∗(P )}

≤
∨
{R | ¬¬YR ≤ ϕ∗(P )}

= �Y (ϕ∗P )

If ϕ were an isomorphism it would preserve and also reflect order and every
element of the lattice would be in the image. Thus the chain can be strength-
ened to show that in this case �Y (ϕ∗P ) and ϕ∗(�X(P )) are equal. QED

The fact that �X is not natural in X implies that there is no morphism
� :Ω→Ω such that �X would arise from it, as is the case for ¬¬X . Note that
it is not a coincidence that �X is not natural but a fundamental limitation
of interior operations. If �X were natural it would have to be the identity.
More precisely, any operation on the subobject lattices that preserves > and
is deflationary and natural in X must be the identity (provided the category
satisfies some minimal requirements). This is proved in [82, Proposition 4.2]
(see also Proposition 4.1 of loc. cit.).
�X does commute with exchange, however, but in general not with con-

traction and weakening. It does commute with weakening in the special case
proved in Corollary 3.A.9 below. For the proof we need the following lemma
stating that ¬¬ commutes with ∃π for suitable π.

Lemma 3.A.8. Let X and Y be types and π : X × Y → X the projection. Then
∃π ◦¬¬ ≤ ¬¬◦∃π always holds. If Y is total the converse also holds. ♦

Proof. ∃π is the left adjoint to π∗. Thus

∃π(¬¬Q) ≤ ¬¬(∃πQ)↔¬¬Q ≤ π∗ (¬¬(∃πQ))

↔¬¬Q ≤ ¬¬ (π∗(∃πQ))

←Q ≤ π∗(∃πQ)

and the last holds because π∗ ◦∃π is a closure.
Now suppose Y is total and let Q ∈ Sub (X ×Y ). First, let ν be a successor

ordinal. Let x ∈ ¬¬(∃π(Q))(ν). By definition x|1 ∈ ∃π(Q)(1), which further
implies there exists y ∈ Y (1), such that (x|1, y) ∈ Q(1). Since Y is total there
exists a y′ ∈ Y (ν), such that y′ |1 = y. Thus (x|1, y′ |1) ∈ Q(1) and so (x,y′) ∈
¬¬Q(ν). This means that x ∈ ∃π(¬¬Q)(ν).

Since this holds for all successor ordinals, it must also hold for limit or-
dinals (actually, the same manual proof would also suffice, but it is more
complicated to write it down). QED
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The restriction on total objects Y is necessary. Consider any total X and
let Y be an object which at stage at stage 1 is some nonempty set and at
greater stages is the empty set. Suppose P = X ×Y , i.e. the top element. Then
∃π(¬¬P )(2) = ∅, however ¬¬(∃π(P ))(2) is not empty (since X is total).

Corollary 3.A.9. Let π : X × Y → X be the projection. If Y is total (restrictions
are surjections) then π∗ ◦�X = �X×Y ◦π∗. ♦

Proof. In light of Proposition 3.A.7 we only need to show. π∗◦�X ≥ �X×Y ◦π∗.
We have

�X×Y (π∗Q) ≤ π∗(�XQ)↔∃π�X×Y (π∗Q) ≤ �XQ
↔¬¬ (∃π�X×Y (π∗Q)) ≤Q
↔∃π¬¬ (�X×Y (π∗Q)) ≤Q
↔¬¬ (�X×Y (π∗Q)) ≤ π∗Q
↔ �X×Y (π∗Q) ≤ �X×Y (π∗Q)

QED

Exchange is reindexing by an isomorphism. Therefore by Proposition 3.A.7
it preserves �.

�modality on constant types

If X = ∆(a) for some set a then �X has a much simpler description.

Lemma 3.A.10. If X = ∆(a) and P ≤ X then

�X(P )(ν) =

1 if ν = 0⋂ω1
ν=1 P (ν) otherwise

.

♦

Proof. Since adjoints are unique we only need to show that �X is right adjoint
to ¬¬X . On constant objects the definition of ¬¬X simplifies to

(¬¬XP )(ν) =

1 if ν = 0

P (1) otherwise
.

Thus suppose ¬¬XP ≤ Q. In particular, this means that for all ν ≥ 1, P (1) ⊆
Q(ν). Thus P (1) ≤

⋂ω1
ν=1Q(ν) and since restrictions on X are inclusions,

meaning that P (ν) ⊆ P (1) for any ν ≥ 1, we get P ≤ �XQ.
Conversely, suppose P ≤ �XQ. Thus P (β) ≤

⋂ω1
ν=1Q(ν) for all β ≥ 1. In

particular this means that P (1) ⊆
⋂ω1
ν=1Q(ν) and so P (1) ⊆Q(ν) for any ν ≥ 1,

meaning that ¬¬XP ≤Q. QED
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Using this description we can show that �X is preserved by reindexing
functors arising from maps between constant sheaves.

Proposition 3.A.11. Let a,b be sets and f : a→ b. Then

∆(f )∗ ◦�∆(b) = �∆(a)◦∆(f )∗.

♦

Proof. Let ν ≥ 1 (for ν = 0 there is nothing to prove). By a simple calculation
we have (

∆(f )∗(�∆(b)(P ))
)
(ν) = f −1

 ω1⋂
ν=1

P (ν)


and since preimages preserve intersections we get

=
ω1⋂
β=1

f −1 [P (β)]

=
ω1⋂
β=1

(∆(f )∗(P )(β))

=
(
�∆(a) (∆(f )∗(P ))

)
(ν)

QED

Note that any morphism ϕ : ∆(a)→ ∆(b) is of the form ϕ = ∆(f ) for some
(unique) f : a→ b, i.e. ∆ is full and faithful. Thus if we restrict to constant
contexts � commutes with substitution and so we may work informally with
� as with ¬¬ or any other logical operation.

The ¬¬modality

It is easy to see that � preserves all limits. Indeed, Π1 also has a left adjoint
σ1 defined as follows

σ1(a)(0) = 1

σ1(a)(1) = a

σ1(a)(ν) = ∅ for ν ≥ 1

which then means that � has a left adjoint σ1 ◦Π1 and thus it must preserve
all limits. This then implies, using the fact that ¬¬X(A) = η∗X (�A) and that
limits in subobject lattices are computed from limits in Sh (ω1), that ¬¬X
preserves all limits. In particular, it preserves all infima, meaning that it also
has a left adjoint, which we call �X . It is given simply as

�X(P ) =
∧
{Q | P ≤ ¬¬Q}

however it can be described in an elementary way as
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Lemma 3.A.12.

�X(P )(ν) =


1 if ν = 0

P (1) if ν = 1

∅ otherwise

♦

Proof. By uniqueness of adjoints we only need to show that �X is left adjoint
to ¬¬X .

First suppose �XP ≤ Q. We are to show P ≤ ¬¬Q. Let x ∈ P (ν). Then
x|1 ∈ P (1), thus by assumption in Q(1). Hence by the explicit description of
¬¬ we have that x ∈ ¬¬Q(ν).

Now suppose P ≤ ¬¬Q and we are to show �XP ≤Q. The only non-trivial
inclusion is at stage 1. So take x ∈ P (1). Then x ∈ Q by assumption (since
¬¬Q(1) =Q(1)), concluding the proof. QED

Note that σ1 ◦Π1 is a comonad, its counit is mono and using the de-
scriptions above we have that �X(P ) = σ1(Π1(mP ));εX where mP is the mono
belonging to P and εX is the counit at X.

In contrast to �, however, � does commute with reindexing. Thus it de-
fines a map � :Ω→Ω which is simply given as

�ν(β) =

0 if ν = 0

1 otherwise

or equivalently as �ν(β) = min{1,β} which then clearly shows that � is natu-
ral, i.e. a morphism Ω→Ω.

The fact that � is natural has as a consequence the fact that ¬¬ commutes
with universal quantification.

Lemma 3.A.13. Let ϕ : X → Y be a morphism and ∀ϕ the right adjoint to ϕ∗.
Then ¬¬◦∀ϕ = ∀ϕ ◦¬¬. ♦

Proof. We show two inequalities using properties of adjoints. We have for
any R

R ≤ ¬¬
(
∀ϕQ

)
↔�R ≤ ∀ϕQ

↔ ϕ∗ (�R) ≤Q
↔� (ϕ∗R) ≤Q
↔ ϕ∗R ≤ ¬¬Q
↔ R ≤ ∀ϕ (¬¬Q)

Which implies that ∀ϕ (¬¬Q) and ¬¬
(
∀ϕQ

)
are equal by picking R to be the

two subobjects and using reflexivity of ≤ the equivalence just proved. QED



3.A. The Topos Sh (ω1) 109

Note that the lemma states that ¬¬ commutes over all universals, not
just the usual ones arising from weakening. This is in contrast to the situa-
tion with ¬¬ and existentials. An analogous proof to the above shows that
� commutes over existentials. The reason we cannot use the same proof to
show that ¬¬ commutes over existentials, even though it has a right adjoint,
is that � does not commute with reindexing.

The fact that � commutes with reindexing is not contrary to [82, Proposi-
tion 4.2] since � does not preserve truth. It is however a comonad, i.e. �P ≤ P
and � � P = �P .

Further, we can show that ¬¬ commutes with implication. Indeed, since
¬¬ preserves limits in subobject lattices we immediately have ¬¬(P → Q) ≤
¬¬P →¬¬Q. For the other direction we first recall that P → Q = ∀mP

(
m∗PQ

)
where mP : P → X is the inclusion of P into X: To that end we use the fact
that P ∧Q =m∗P (Q). We have

P ∧R ≤Q↔ P ∧R ≤ P ∧Q↔m∗P (R) ≤m∗P (Q)↔ R ≤ ∀mP
(m∗P (Q))

and by uniqueness of adjoints also P → Q = ∀mP

(
m∗PQ

)
. Using this, we can

prove the following.

Lemma 3.A.14. ¬¬(P →Q) = P →¬¬Q = ¬¬P →¬¬Q ♦

Proof. Since ¬¬(P → Q) ∧ P ≤ ¬¬(P → Q ∧ P ) ≤ ¬¬Q we get ¬¬(P → Q) ≤
P →¬¬Q and also ¬¬(P →Q) ≤ ¬¬P →¬¬Q.

By the above characterisation and the fact that ¬¬ commutes over rein-
dexing and universals we have.

¬¬(P →Q) = ¬¬
(
∀mP

(
m∗P (Q)

))
= ∀mP

(
m∗P (¬¬Q)

)
= P →¬¬Q

It is easy to see that

¬¬P →¬¬Q ≤ P →¬¬Q,

with the same calculation as above (also, we can always weaken the precon-
dition). We thus have ¬¬P →¬¬Q ≤ P →¬¬Q = ¬¬(P →Q). This concludes
the proof. QED

The . and Imodalities

Recall that the first ordinal, 0, is a limit ordinal. It is the limit of the empty
sequence. There is a functor I : Sh (ω1)→ Sh (ω1) defined by

I(X)(ν + 1) = X(ν)

I(X)(α) = X(α) for a limit ordinal α
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and the obvious action on morphisms. There is a natural transformation
nextX : X→ I(X) defined as

nextXν+1 = rν
nextXα = idX(α) for a limit ordinal α

where rν = X(ν ≤ ν + 1) : X(ν + 1)→ X(ν) is the restriction map of X.
Using I we can define a notion of contractiveness of morphisms.

Definition 3.A.15. A morphism ϕ : X → Y is (externally) contractive if there
exists a morphism g : IX→ Y , such that f = nextX ;g. �

A useful property of contractive endomorphisms is that they have unique
fixed points.

Proposition 3.A.16. If f : X → X is a contractive morphism then there exists a
unique e : 1→ X such that e;f = e. ♦

Proof. Let f = nextX ;g. By construction of I we have that gν+1 : X(ν) →
X(ν+1) andX(0) = 1. We thus define a global section by induction as follows6

(again, α is a limit ordinal)

e0(∗) = g0(∗)
eν+1(∗) = gν+1(eν(∗))

eα = lim
ν<α

eν

where limν<α eν denotes the unique element ofX(α) that restricts to eν , ν < α.
Now it is obvious that r0(e1(∗)) = e0(∗). For the successor ordinals we have

rν(eν+1) = rν(gν+1(eν(∗))) = fν(eν(∗)) = eν(∗)

and

fν+1(eν+1(∗)) = gν+1(rν(eν+1(∗))) = gν+1(eν(∗)) = eν+1(∗).

and for limit ordinals we have that eα restricts to previous ones by con-
struction. To show that fα(eα(∗)) = eα(∗) we show that fα(eα(∗)) restricts to the
same elements. Let ν < α.

fα(eα(∗))|ν = fν (eα |ν) = fν(eν) = eν

hence fα(eα(∗)) = eα by uniqueness of amalgamations.
Thus e defines a natural transformation 1→ X with e;f = e. To see that it

is unique observe that if e′ : 1→ X is such that e′;f = e′ we have

e′ν+1(∗) = fν+1(e′ν+1(∗)) = gν+1(rν(e′ν+1(∗))) = gν+1(e′ν(∗))

and the values at limit ordinals α are uniquely determined by the sheaf con-
dition. Thus e′ = e. QED

6More precisely, we define at stage ν a triple of an element eν ∈ X(ν) and proofs that it is
a fixed point of fν and that it restricts to the previous ones.
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.modality I is a modality on types. It is easy to see that it preserves all lim-
its, since they are constructed pointwise. In particular, it preserves monos,
therefore subobjects. Thus we can define an operation on subobject lattices,
which we call .. Given m : A ≤ X the subobject .m : .A ≤ X is defined via
pullback along nextX as in the following diagram

.XA IA

X IX.

y
.m Im

nextX

Since it is defined via pullback it is easy to see that this operation is nat-
ural in X, i.e. for any morphism ϕ : Y → X we have ϕ∗ ◦ .X = .Y ◦ϕ∗. By the
usual Yoneda argument we thus get a morphism . : Ω→ Ω such that given
A ≤ X with the characteristic map χA, the characteristic map of .XA is χA;..

We can compute . :Ω→Ω more concretely as

.ν(β) = min(β + 1,ν).

Kripke-Joyal semantics

Let X be a sheaf and ϕ,ψ formulas in the internal language with a free vari-
able of type X, i.e. x : X ` ϕ :Ω and x : X ` ψ :Ω.

Let ν ≤ω1 and ξ ∈ X(ν). Then

• ν 
⊥ iff ν = 0;

• ν 
> always;

• ν 
 ϕ(t)(ξ) iff ~ϕ�ν (~t�ν(ξ)) = ν, for a predicate symbol ϕ on X;

• ν 
 ϕ(ξ)∧ψ(ξ) iff ν 
 ϕ(ξ) and ν 
 ψ(ξ);

• ν 
 ϕ(ξ)∨ψ(ξ) iff ν 
 ϕ(ξ) or ν 
 ψ(ξ);

• ν 
 ϕ(ξ)→ ψ(ξ) iff for all β ≤ ν,β 
 ϕ(ξ |β) implies β 
 ψ(ξ |β);

• ν 
 ¬ϕ(ξ) iff for all β ≤ ν,β 
 ϕ(ξ |β) implies β = 0.

If further we have x : X,y : Y ` ϕ :Ω, ν ≤ω1 and ξ ∈ X(ν) then

ν 
 ∃y,ϕ(ξ,y) iff there exists ξ ′ ∈ Y (ν),ν 
 ϕ(ξ,ξ ′)

if ν is a successor ordinal and

ν 
 ∃y,ϕ(ξ,y) iff for all β < ν there exists ξβ ∈ Y (β),β 
 ϕ(ξ |β ,ξβ)
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if ν is a limit ordinal. Finally for the universal quantification we have the
usual

ν 
 ∀y,ϕ(ξ,y) iff for all β ≤ ν, for all ξβ ∈ Y (β),β 
 ϕ(ξ |β ,ξβ)

These are standard, cf. [66, Theorem VI.7.1]. The case for disjunction is per-
haps not immediately clear since using the cited theorem literally would give
us two cases

ν 
 ϕ(ξ)∨ψ(ξ) iff ν 
 ϕ(ξ) or ν 
 ψ(ξ)

if ν is a successor ordinal (since there is only one cover in such a case) and

ν 
 ϕ(ξ)∨ψ(ξ) iff for all β < ν,β 
 ϕ(ξ |β) or β 
 ψ(ξ |β)

if ν is a limit ordinal. However because the order on ω1 is linear in the latter
case by truth preservation we must have either

ν 
 ϕ(ξ)∨ψ(ξ) iff for all β < ν,β 
 ϕ(ξ |β)

or

ν 
 ϕ(ξ)∨ψ(ξ) iff for all β < ν,β 
 ψ(ξ |β).

By the local character property (see below) we then have ν 
 ϕ(ξ) and ν 

ψ(ξ), respectively.

This can be generalised for any finite disjunction, but infinite disjunctions
and existentials cannot be so simplified.

The semantics of . is as follows. Let ϕ :ΩX . Then

ν 
 .ϕ(α) iff for all β < ν,β 
 ϕ(α|β) (3.1)

For successor ordinals ν = ν′ + 1 this reduces to

ν 
 .ϕ(α) iff ν′ 
 ϕ(α|ν′ )

which is easy to check from the definition of . above. For limit ordinals
the characterisation in (3.1) follows from the local character property (see
below).

Note that 0 
 ϕ for any ϕ and 1 
 .ϕ for any ϕ.

Local character By the local character property [66, VI.7 (page 316)] we
have for any limit ordinal ξ

ξ 
 ϕ(α) iff for all β < ξ,β 
 ϕ(α|β).

Therefore to prove validity of a formula at a limit ordinal, it suffices to do
so on all strictly smaller ordinals. This is one of the reasons to use sheaves
instead of presheaves. To transfer local properties to global ones.

Note that from the characterisation in (3.1) it is immediate that p → .p
for any p.
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Proposition 3.A.17. . satisfies the Löb induction rule ∀p :Ω, (.p→ p)→ p and
also satisfies the following properties.

• . preserves ∧, ∨, > and→,

• .(∀x : X,ϕ(x))→∀x : X,.ϕ(x),

• ∃x : X,.ϕ(x)→ .(∃x : X,ϕ(x)).

♦

Proof. The proof of the Löb induction rule is by Kripke-Joyal semantics.
More precisely, by induction on ν we prove that for all ξ ∈Ω(ν), for all β ≤ ν,
β 
 (.p→ p)(ξ |β) implies ξ |β = β.

• If ν = 0 there is nothing to prove.

• If ν = ν′ + 1 we consider two cases.

– If β ≤ ν′ the result follows directly from the induction hypothesis.

– If β = ν assume β 
 (.p → p)(ξ). We need to show ξ = β. By in-
duction hypothesis and monotonicity ξ |ν′ = ν′, or in other words,
ν′ 
 ξ |ν′ . Since by assumption β 
 .ξ implies β 
 ξ we get β = ξ.

If ν is a limit ordinal the result follows from the local character property.

. preserves ∧ Given two subobjectsA,B ≤ X with characteristic maps χA,χB,
the characteristic map of A ∧ B is given by 〈χA,χB〉;∧, where ∧ : Ω ×
Ω→ Ω is given by ∧ν(β,β′) = min{β,β′}. It is thus easy to see that ∧
commutes with ., i.e. that .× .;∧ = ∧;..

. preserves→ Similarly to ∧,→ is given on subobjects by composition with
→:Ω×Ω→Ω which is given as

→ν (β,β′) =

ν if β′ ≥ β
β′ otherwise

and since . preserves order, i.e. β′ ≥ β implies .ν(β′) ≥ .ν(β), it is easy
to see that→;. = .× .;→.

. preserves ∨ ∨ is given on subobjects by composition with ∨ : Ω ×Ω→ Ω

which is given by
∨ν(β,β′) = max{β,β′}.

Using this it is easy to see that .× .;∨ = ∨;..



114 A Model of Countable Nondeterminism in Guarded Type Theory

Universal quantifier Take ν ≤ω1 and assume ν 
 .(∀x : X,ϕ(x)). Take β ≤ ν
and xβ ∈ X(β). We are to show β 
 .ϕ(xβ). Let β′ < β. We are to show
β′ 
 ϕ(xβ |β′ ). Since β′ < ν we have that β′ 
 ∀x : X,ϕ(x). The conclusion
follows.

Existential quantifier Take ν ≤ ω1 and assume ν 
 ∃x : X,.ϕ(x). We are to
show ν 
 .(∃x : X,ϕ(x)).

Let β < ν. We have to show β 
 ∃x : X,ϕ(x).

Suppose ν is a successor ordinal. Using the assumption we have that
there exists xν ∈ X(ν), such that ν 
 .ϕ(xν) which implies in particular
that β 
 ϕ(xν |β). Choosing xν |β ∈ X(β) we have that β 
 ∃x : X,ϕ(x).

Suppose ν is a limit ordinal. Let β < ν. Then β + 1 < ν and by as-

sumption there exists a xβ+1 ∈ X(β + 1) such that β 
 ϕ
(
xβ+1|β

)
. Thus

β 
 ∃x : X,ϕ(x). QED

Proposition 3.A.18. IfX is total then (∀x : X,.ϕ(x))→ .(∀x : X,ϕ(x)) holds. ♦

Proof. Take ν < ω1 and assume ν 
 ∀x : X,.ϕ(x). Take β < ν. We are to
show β 
 ∀x : X,ϕ(x). Take ξ ≤ β and xξ ∈ X(ξ). Since X is total there is
xξ+1 ∈ X(ξ + 1) that restricts to xξ . Since ξ + 1 ≤ ν we have ξ + 1 
 .ϕ(xξ+1),
thus ξ 
 ϕ(xξ ). QED

Remark 3.A.19. It is not the case that if X is total and inhabited then

.(∃x : X,ϕ(x))→∃x : X,.ϕ(x)

holds, as is the case in the logic of the topos of trees [22]. In fact, even if X is
a constant sheaf this does not necessarily hold. �

Proof. Let X = ∆(N). The constant sheaf of natural numbers is

1 N N N Nid id id id

Let A ≤ X be the subobject defined as follows

A(0) = 1

A(n) = {k | n ≤ k < ω} for 0 < n < ω

A(ν) = ∅ for ω ≤ ν < ω1

A is a subsheaf of X. Let ϕ be the characteristic map of A. If

.(∃x : X,ϕ(x))→∃x : X,.ϕ(x)

were to hold it would hold at stage ω + 1. But ω + 1 
 .(∃x : X,ϕ(x)) since for
all n < ω, exists n ∈ A(n), i.e. we can choose xn = n and then n 
 ϕ(xn).

But notice that A(ω + 1) is empty, hence the right hand side of the impli-
cation is false. QED



3.A. The Topos Sh (ω1) 115

Remark 3.A.20. The last remark has implications for fixed points. It seems
that the internal Banach fixed point theorem does not hold in the same gener-
ality as it does in the topos of trees [22], or rather the proof that works for the
topos of trees does not carry over, since it uses the fact that later commutes
over existentials for total and inhabited objects.

This state of affairs makes intuitive sense, since [22, Lemma 2.10] does
not make intuitive sense for Sh (ω1) since it implies that at any stage we can
get a fixed point by a finite iteration, something we would not expect to hold
in Sh (ω1). �

Guarded recursive predicates

We now show that suitably internally contractive functions have unique fixed-
points, thus establishing the existence of recursively defined predicates and
relations.

Definition 3.A.21. Define

Inhab(X) = ∃x : X.>
Total (X) = ∀x : IX,∃x′ : X,nextX(x′) = x

�

If ` Inhab(X) then each X(ν) is non-empty, but this does not mean that a
global section exists. If ` Total (X) then the restriction maps are surjections
(which implies that each stage X(ν) is inhabited, since X is a sheaf, i.e. X(1) =
1).

Proposition 3.A.22 (Internal Banach’s fixed point theorem). The following
holds in the internal logic of Sh (ω1).

Total (X)→∀f : XX ,Contr(f )→∃!x : X,f (x) = x

♦

Proof. We use the Kripke-Joyal forcing semantics and proceed by induction
on ν. If ν = 0 there is nothing to prove. Let ν = ν′+1 and assume ν 
 Total (X).
Let f ∈ XX(ν), β ≤ ν and β 
 Contrf . We are to show β 
 ∃!x : X,f (x) = x. We
define a sequence of elements eξ ∈ X(ξ) for ξ ≤ β as follows.

e0 = f0(∗)
eξ+1 = fξ+1(r−1

ξ (eξ ))

eα = lim
ξ<α

eξ

This requires some explanations. First, r are the restriction maps of X. Sec-
ond, α is again a limit ordinal and the limit means the unique element of
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X(α) that exists by the sheaf condition. Third, since ξ + 1 in the definition
is smaller or equal to ν we can use the assumption that X is total with the
element eξ to get some element r−1

ξ (eξ ) ∈ X(ξ + 1) that restricts to eξ .
First we observe that the choice of r−1

ξ (eξ ) ∈ X(ξ + 1) does not matter.
This follows from contractiveness of f since if u,v both restrict to eξ then
fξ+1(u) = fξ+1(v).

Further, we have that fξ(eξ ) = eξ and that rξ(eξ+1) = eξ . For ξ = 0 this is
obvious. For successor ordinals we have

fξ+1(eξ+1) = fξ+1(fξ+1(r−1
ξ (eξ )))

Since f is contractive it suffices to show rξ(eξ+1) = rξ(fξ+1(r−1
ξ (eξ )))) and this

follows by naturality of f and the induction hypothesis.
And

rξ(eξ+1) = rξ(fξ+1(r−1
ξ (eξ ))) = fξ(eξ ) = eξ .

For limit ordinals the restrictions are automatic. To see that fα(eα) = eα
we show that fα(eα) restricts to the same elements and this is immediate by
naturality of the family f .

Thus there exist a xβ ∈ X(β) such that fβ(xβ) = xβ . Uniqueness is shown
similarly to uniqueness of external fixed points in Proposition 3.A.16. QED

Predicates defined as least and greatest fixed points

Inductively and coinductively defined predicates are constructed as least and
greatest fixed points of suitable maps of type P (X)→P (X) for a suitable X,
giving a predicate on X. We will show that these predicates are ¬¬ closed
provided the defining functions are sufficiently tame.

Greatest fixed points

Proposition 3.A.23. Suppose ϕ is a predicate on Γ ,x : X and suppose that the
sequent

Γ | ∅ ` ∀x : X,ϕ↔ F(ϕ)

holds where F(ϕ) is a well-formed formula in context Γ ,x : X consisting of ∀,→
,∧,∨,>,⊥ and existential quantification over total types and using only¬¬-closed
predicate and relation symbols. Then

Γ | ∅ ` ∀x : X,¬¬ϕ↔ F(¬¬ϕ)

also holds. In other words, if ϕ is a fixed point of F then so is ¬¬ϕ. ♦

Proof. From
Γ | ∅ ` ∀x : X,ϕ↔ F(ϕ)
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we immediately get
Γ | ∅ ` ¬¬ (∀x : X,ϕ↔ F(ϕ))

and using the fact that ¬¬ commutes with implication, universal quantifiers
and conjuction we get

Γ | ∅ ` ∀x : X,¬¬ϕ↔¬¬F(ϕ)

and now the restrictions on F guarantee that ¬¬F(ϕ) = F(¬¬ϕ), concluding
the proof. QED

As a consequence, suppose we define a predicate ϕ on X coinductively as
the greatest fixed point of some F : P (X)→ P (X). Since ϕ→ ¬¬ϕ and if ϕ
is a fixed point then also ¬¬ is, we have that ϕ is ¬¬-closed.

Least fixed points

Proposition 3.A.24. Suppose ϕ is a predicate on Γ ,x : X and suppose that the
sequent

Γ | ∅ ` ∀x : X,F(ϕ)→ ϕ

holds where F(ϕ) is a well-formed formula in context Γ ,x : X consisting of ∀,→
,∧,∨,>,⊥ and existential quantification over total types and using only¬¬-closed
predicate and relation symbols where in addition ϕ only occurs positively, i.e. F
preserves implication.

Then
Γ | ∅ ` ∀x : X,F(�ϕ)→ �ϕ

also holds. ♦

Proof. Since � does not behave as well as ¬¬ we have to prove this using the
model. Our assumption gives us that ~F(ϕ)� ≤ ~ϕ� in the fibre over Γ ,x : X
and we wish to show ~F (�ϕ)� ≤ ~�ϕ� = �~ϕ�. Since � is the right adjoint
to ¬¬ we have

~F (�ϕ)� ≤ �~ϕ�↔¬¬~F (�ϕ)� = ~¬¬F (�ϕ)� ≤ ~ϕ�

and since the assumptions on F guarantee that ¬¬F(ϕ) = F(¬¬ϕ) we have

↔ ~F (¬¬�ϕ)� ≤ ~ϕ�

which by properties of ¬¬ and � gives us

↔ ~F (�ϕ)� ≤ ~ϕ�

which holds by the fact that �ϕ→ ϕ and the assumption on monotonicity of
F. QED

It is an easy fact to show that least fixed points of monotone functions are
exactly their least prefixed points. Using Proposition 3.A.24 and the facts
that � is deflationary and for any ϕ, �ϕ is ¬¬-closed we can conclude that
inductively defined predicates are constant, provided they can be defined
using a suitable subset of the logic.
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Consequence for the external interpretation Since Π1 is a logical functor
it preserves structure of an elementary topos. More precisely, Π1 : Sh (ω1)→
Set gives rise to the morphism of higher-order fibrations

SubSh(ω1) SubSet

Sh (ω1) Set

cod cod

Π1

that preserves the structure of a higher-order fibration (i.e. constructs to
model higher-order logic). In particular this means it preserves validity of
formulas in the internal language that use only the usual connectives of
higher-order logic (i.e. everything but . and �).

Thus given a formula ϕ of higher-order logic (i.e. no � and no .) in some
context Γ and choosing some interpretations of relational symbols, the deno-
tation Π1 (~ϕ�) as a subobject of Π1 (~Γ �) is the same as the denotation of ϕ
in Set, replacing the interpretations of relational symbols and types by their
values at stage 1.

For instance if

x : ∆(a), y : ∆(b) | ∅ ` ∀z : P (∆(a)) ,∃w : P (∆(b)) , P (x,w)→Q(z,y)

holds in the logic of Sh (ω1) with P andQ being interpreted as some ∆(p) and
∆(q), respectively, then

x : a,y : b | ∅ ` ∀z : P (a) ,∃w : P (b) , P (x,w)→Q(z,y)

holds with P being interpreted as p and Q as q (we used the that Π1 ◦∆ =
idSet).

Combining this with the construction of fixed points we get that least and
greatest fixed points constructed internally are mapped to external least and
greatest fixed points.

Proposition 3.A.25. Let ϕ be a predicate symbol on ∆(a) and let F(ϕ) be a for-
mula in context x : ∆(a). Suppose F(ϕ) is monotone in ϕ and suppose it involves
only quantifiers over constant sets and constant predicate symbols. If

∅ | ∅ `(∀x : ∆(a),ϕ(x)↔ F(ϕ))

∧ (∀ψ : P (∆(a)) , (∀x : ∆(a),ψ(x)↔ F(ψ))→ (∀x : ∆(a),ψ(x)→ ϕ(x)))
(3.2)

holds in the logic of Sh (ω1) then

∅ | ∅ `(∀x : a,ϕ(x)↔Π1(F)(ϕ))

∧ (∀ψ : P (a) , (∀x : a,ψ(x)↔Π1(F)(ψ))→ (∀x : a,ψ(x)→ ϕ(x)))
(3.3)
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holds in the logic of Set with interpretations of relational symbols being Π1-
images of their chosen interpretations in Sh (ω1). Here Π1(F) means replacing
occurrences of ∆(b) in quantifiers with b. ♦

Remark 3.A.26. Note that if ϕ is a predicate on ∆(a) (in the empty context)
then ϕ(x) is a formula in context x : ∆(a). These formulas characterise ϕ as
the greatest predicate (or subset) satisfying F. We can state and prove an
analogous property for least fixed points. �

From Proposition 3.A.23 we have that if (3.2) holds then ϕ = ¬¬ ◦ ϕ.
Thus x : ∆(a) | ∅ ` ϕ(x) corresponds to a constant subobject of ∆(a), say ∆

(
ϕ
)
.

Formula (3.3) state that ϕ is the greatest fixed point of “the same” formula.

Transitive closure

We prove that given a ¬¬ closed relation R on a set with decidable equality
its reflexive and transitive closure R∗ is also ¬¬-closed.

Lemma 3.A.27. Let R ⊆ X × X be a relation on a decidable total type X. If R
is ¬¬-closed (meaning for all x,x′ : X, (x,x′) ∈ R ↔ ¬¬((x,x′) ∈ R)) then the
reflexive transitive closure R∗ is also ¬¬-closed. ♦

Proof. By construction R∗ =
∨
n∈NR

n where the sequence {Rn}n∈N is defined
by induction as

R0 = {(x,x′) | x = x′}
Rn+1 = {(x,x′′) | ∃x′ : X, (x,x′) ∈ R∧ (x′ ,x′′) ∈ Rn}

Thus it suffices to show that all Rn are ¬¬-closed and we do this by induction.
R0 is ¬¬-closed since X is assumed to have decidable equality. Assuming Rn

is ¬¬-closed we have

¬¬((x,x′) ∈ Rn+1)↔¬¬∃x′ : X, (x,x′) ∈ R∧ (x′ ,x′′) ∈ Rn

and since X is assumed to be total we have by Lemma 3.A.8 and the fact that
¬¬ commutes with conjunction that

↔∃x′ : X,¬¬((x,x′) ∈ R)∧¬¬((x′ ,x′′) ∈ Rn)

which is by assumption on R and the induction hypothesis equivalent to

↔∃x′ : X, (x,x′) ∈ R∧ (x′ ,x′′) ∈ Rn

which is by definition of Rn+1 equivalent to

↔ (x,x′) ∈ Rn+1.

QED

In particular, all constant sets are total and decidable and so the lemma
applies.
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3.B The Model of a Language with Countable Choice

In this section we introduce Fµ,?, a call-by-value functional language akin to
System F, i.e., with impredicative polymorphism, existential and general re-
cursive types, extended with a countable choice expression ?. We work infor-
mally in the internal logic of Sh (ω1) outlined above except where explicitly
stated.

Syntax and operational semantics

The syntax of types, terms and values is defined in Figure 3.4. These should
be understood as initial algebras of suitable polynomial functors.

τ ::= α | 1 | τ1 × τ2 | τ1 +τ2 | τ1→ τ2 | µα.τ | ∀α.τ | ∃α.τ
v ::= x | 〈〉 | 〈v1,v2〉 | λx.e | inl v | inr v |Λ.e | packv
e ::= x | 〈〉 | 〈e1, e2〉 | λx.e | inl e | inr e |Λ.e | packe

| ? | proji e | e1 e2 | case (e,x1.e1,x2.e2) | e[] | unpack e1 as x in e2

| unfolde | folde
E ::= − | 〈E,e〉 | 〈v,E〉 | inl E | inr E | packE

| proji E | E e | vE | case (E,x1.e1,x2.e2) | E[] | unpack E as x in e
| unfoldE | foldE

C ::= − | 〈C,e〉 | 〈e,C〉 | λx.C | inl C | inr C |Λ.C | packC
| projiC | C e2 | eC | case (C,x1.e1,x2.e2) | case (e,x1.C,x2.e2)

| case (e,x1.e1,x2.C) | C[] | unpack C as x in e | unpack e as x in C
| unfoldC | foldC

Figure 3.4: Types, terms and evaluation contexts

The types include polymorphic, existential and recursive types. The cor-
responding terms are standard, apart from the countable choice expression
?. We assume disjoint, countably infinite sets of type variables, ranged over
by α, and term variables, ranged over by x. The free type variables of types
and terms, ftv(τ) and ftv(e), and free term variables fv(e), are defined in the
usual way. The notation (·)[~τ/ ~α] denotes the simultaneous capture-avoiding
substitution of types ~τ for the free type variables ~α in types and terms; sim-
ilarly, e[~v/~x] denotes simultaneous capture-avoiding substitution of values ~v
for the free term variables ~x in e.

Composition of evaluation contexts Evaluation contexts can be composed.
Given two evaluation contexts E,E′ we define E ◦ E′ by induction on E as
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follows

[] ◦E′ = E′

〈E,e〉 ◦E′ = 〈E ◦E′ , e〉
〈v,E〉 ◦E′ = 〈v,E ◦E′〉

(projiE) ◦E′ = projiE ◦E′

(inlE) ◦E′ = inl (E ◦E′)
(inrE) ◦E′ = inr (E ◦E′)

(foldE) ◦E′ = fold (E ◦E′)
(unfoldE) ◦E′ = unfold (E ◦E′)

(packE) ◦E′ = pack (E ◦E′)
(unpack E as x in e) ◦E′ = unpack (E ◦E′) as x in e

(case (E,x1.e1,x2.e2)) ◦E′ = case (E ◦E′ ,x1.e1,x2.e2)

(case (E,x1.e1,x2.e2)) ◦E′ = case (E ◦E′ ,x1.e1,x2.e2)

(E e) ◦E′ = (E ◦E′)e
(vE) ◦E′ = v (E ◦E′).

Lemma 3.B.1. For any pair of evaluation contexts E,E′ and an expression e,

E[E′[e]] = (E ◦E′)[e]

♦

Types We define the type of natural numbers nat as nat = µα.1+α and
the corresponding numerals as 0 = fold (inl 〈〉) and n+ 1 = fold (inr n) by
induction on n.

The type system is defined in Figure 3.6. The judgement ∆ ` τ is defined
in Figure 3.5. The judgements are mostly standard, apart from the typing of
?.

α ∈ ∆
∆ ` α

∆ ` 1

∆ ` τ1 ∆ ` τ2

∆ ` τ1 × τ2

∆ ` τ1 ∆ ` τ2

∆ ` τ1 +τ2

∆ ` τ1 ∆ ` τ2

∆ ` τ1→ τ2

∆,α ` τ
∆ ` ∃α.τ

∆,α ` τ
∆ ` ∀α.τ

∆,α ` τ
∆ ` µα.τ

Figure 3.5: Well-formed types. The judgement ∆ ` τ expresses ftv(τ) ⊆ ∆.
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x:τ ∈ Γ ∆ ` Γ
∆;Γ ` x : τ

∆ ` Γ
∆;Γ ` 〈〉 : 1

∆;Γ ` e1 : τ1 ∆;Γ ` e2 : τ2

∆;Γ ` 〈e1, e2〉 : τ1×τ2

∆;Γ ,x:τ1 ` e : τ2

∆;Γ ` λx.e : τ1→τ2

∆;Γ ` e : τ1 ∆ ` τ2

∆;Γ ` inl e : τ1 +τ2

∆;Γ ` e : τ2 ∆ ` τ1

∆;Γ ` inr e : τ1 +τ2

∆;Γ ,x1:τ1 ` e1 : τ ∆;Γ ,x2:τ2 ` e2 : τ ∆;Γ ` e : τ1 +τ2

∆ Γ ` case (e,x1.e1,x2.e2) : τ

∆,α;Γ ` e : τ

∆;Γ `Λ.e : ∀α.τ
∆;Γ ` e : τ1 × τ2

∆;Γ ` proji e : τi

∆;Γ ` e : τ ′→ τ ∆;Γ ` e′ : τ ′

∆;Γ ` e e′ : τ

∆ ` τ1 ∆;Γ ` e : τ[τ1/α]

∆;Γ ` packe : ∃α.τ

∆;Γ ` e : ∃α.τ1 ∆ ` τ ∆,α;Γ ,x : τ1 ` e′ : τ
∆;Γ ` unpack e as x in e′ : τ

∆;Γ ` e : µα.τ

∆;Γ ` unfolde : τ[µα.τ/α]

∆;Γ ` e : τ[µα.τ/α]

∆;Γ ` folde : µα.τ

∆;Γ ` e : ∀α.τ ∆ ` τ ′

∆;Γ ` e[] : τ[τ ′/α]

∆ ` Γ
∆;Γ ` ? : nat

Figure 3.6: Typing of terms, where Γ ::= ∅ | Γ ,x:τ and ∆ ::= ∅ | ∆,α. The
notation ∆ ` τ means that ftv(τ) ⊆ ∆.

We write Type(∆) for the set of types well-formed in context ∆ and Type
for the set of closed types τ , i.e., where ftv(τ) = ∅. We write Val (τ) and Tm (τ)
for the sets of closed values and terms of type τ , respectively. We write Val
and Tm for the set of all closed values and closed terms, respectively. Stk (τ)
denotes the set of τ-accepting evaluation contexts, i.e. evaluation contexts
E, such that given any closed term e of type τ , E[e] is a typeable term. Stk
denotes the set of all evaluation contexts.

For a typing context Γ = x1:τ1, . . . ,xn:τn with τ1, . . . , τn ∈ Type, let

Subst(Γ ) = {γ ∈Val~x | ∀1 ≤ i ≤ n. γ(xi) ∈Val (τi)}

denote the set of type-respecting value substitutions. In particular, if ∆;Γ `
e : τ then ∅;∅ ` eγ : τδ for any δ ∈ Type∆ and γ ∈ Subst(Γ δ), and the type sys-
tem satisfies standard properties of progress and preservation and a canoni-
cal forms lemma.



3.B. The Model of a Language with Countable Choice 123

Basic reductions 7−→

proji 〈v1,v2〉 7−→ vi unfold (foldv) 7−→ v

(λx.e)v 7−→ e[v/x] unpack (packv) as x in e 7−→ e[v/x]

(Λ.e)[] 7−→ e case (inlv,x1.e1,x2.e2) 7−→ e1[v/x1]

? 7−→ n (n ∈N) case (inrv,x1.e1,x2.e2) 7−→ e2[v/x2]

One step reduction relation;

E[e]; E[e′] if e 7−→ e′

Figure 3.7: Operational semantics.

The operational semantics of the language is given in Figure 3.7 by a re-
duction relation e; e′. In particular, the choice operator ? evaluates nonde-
terministically to any numeral n (n ∈N). We use evaluation contexts E, and
write E[e] for the term obtained by plugging e into E.

To define the logical relation we need further reduction relations. These
will allow us to ignore most reductions in the definition of logical relation.

Let ;∗ be the reflexive transitive closure of ;. We call reductions of the
form unfold (foldv) ; v unfold-fold reductions and reductions of the form
?; n (n ∈N) choice reductions. We define

• e
p
; e′ if e;∗ e′ and none of the reductions is a choice reduction

• e
0; e′ if e;∗ e′ and none of the reductions is an unfold-fold reduction

• e
1; e′ if e ;∗ e′ and exactly one of the reductions is an unfold-fold

reduction

•
p,1
;=

p
; ∩ 1;

•
p,0
;=

p
; ∩ 0;

The 1; reduction relation will be used in the stratified definition of diver-
gence, see Section 3.B, and the other reduction relations will be used to state
additional properties of the logical relation.

Termination relations

In order to define the >> closure we need to define our observations. Recall
that previously [23] this was achieved by defining the termination relations
⇓ and ↓ and stratified versions of these, ⇓β and ↓n for β < ω1 and n < ω.

Focusing on ⇓β , it is defined by induction on β as e ⇓β↔ ∀e′ , e
1; e′ → ∃ν <
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β,e′ ⇓ν . It is easy to see that ⇓β⊂⇓β+1 so
{
⇓β

}
β<ω1

does not define a subobject

of the constant sheaf ∆(Tm).
But observe that defining 7→β = Tm\ ⇓β , the predicate 7→β may be defined

by induction on β as

e 7→

β
↔∃e′ , e 1; e′ ∧∀ν < β,e′ 7→

ν
.

Using this, we define internally 7→ : P (Tm) as the unique fixed point of
Ψ : P (Tm)→P (Tm) given by

Ψ (m) =
{
e : Tm

∣∣∣∣ ∃e′ , e 1; e′ ∧ .(m(e′))
}
.

This is the stratified definition of may-divergence (there is a diverging path).
We can also define (internally) non-stratified divergence predicate ↑ as the
greatest fixed-point of Φ : P (Tm)→P (Tm) given as

Φ(m) =
{
e : Tm

∣∣∣ ∃e′ , e; e′ ∧m(e′)
}
.

Since Φ is monotone the greatest fixed point exists by Knaster-Tarski fixed-
point theorem (which holds in any topos). Observe that Ψ is almost the same
as Φ ◦ ., apart from using a different reduction relation.

As a consequence of Proposition 3.A.23 we have that may-divergence is a
decidable property, i.e., for all terms e we have e↑∨¬(e↑).

Lemma 3.B.2. Let e,e′ ∈ Tm. The following hold in the internal language.

1. if e
p
; e′ then e↑↔ e′↑

2. if e
p,0
; e′ then e 7→ ↔ e′ 7→

3. if e 0; e′ then (e′ 7→)→ e 7→

4. if e 1; e′ then .(e′ 7→)→ e 7→

♦

Proof. 1. Suppose e
p
; e′. If e = e′ there is nothing to do. Otherwise,

the crucial property we have is that there exists a unique e′′, such that
e; e′′ and e′′

p
; e′. Using this property this case follows by induction

on the number of steps in
p
;.

2. This property follows from the fact that if e
p,0
; e′ then e

1; e′′ if and

only if e′ 1; e′′ which is easy to see directly from the definition of these
relations.
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3. Suppose e 0; e′ and e′ 7→. Then by definition there exists a e′′, such that

e′
1; e′′ and .(e′′ 7→). By definition of 1; we also have e 1; e′′ and so e 7→.

4. This follows directly from the definition of the 7→ relation.
QED

Must-contextual and must-CIU preorders

Contexts can be typed as second-order terms, by means of a typing judge-
ment of the form C : (∆ | Γ V τ)# (∆′ | Γ ′V σ ), stating that whenever

∆ | Γ ` e : τ

holds, ∆′ | Γ ′ ` C[e] : σ also holds. The typing of contexts can be defined as an
inductive relation defined by suitable typing rules, which we omit here since
they are standard; see [6]. We write C : (∆ | Γ V τ) to mean there exists a type
σ , such that C : (∆ | Γ V τ)# (∅ | ∅V σ ) holds.

We define contextual must-approximation using the may-divergence pred-
icate. This is in contrast with the definition in [23] which uses the must-
convergence predicate. However externally, in the model, this definition is
precisely the one used in [23].

Definition 3.B.3 (Must-contextual approximation). We define the must-con-
textual approximation relation as

∆ | Γ ` e1 .
ctx
⇓ e2 : τ , ∆ | Γ ` e1 : τ ∧∆ | Γ ` e2 : τ ∧

∀C,C : (∆ | Γ V τ)∧C[e2]↑→ C[e1]↑

�

Note the order of terms in the implication: if C[e2] may-diverges then
C[e1] may-diverges. This is the contrapositive of the usual definition which
states that if C[e1] must-converges then C[e2] must-converges. Must-con-
textual approximation defined explicitly using contexts can be shown to be
the largest compatible adequate and transitive relation, so it coincides with
contextual approximation defined in [23].

In practice it is difficult to work with contextual approximation directly.
An alternative characterisation of the contextual approximation and equiva-
lence relations can be given in terms of CIU preorders [67], which we define
below. We will use the logical relation to prove that CIU and contextual
approximations coincide and that both of them coincide with the logical ap-
proximation relation.

The definition of the CIU approximation is the same as in [23], only with
changed termination relations. We state it here for completeness and refer-
ence.



126 A Model of Countable Nondeterminism in Guarded Type Theory

Definition 3.B.4 (CIU approximation). Must-CIU approximation, .CIU, is the
type-indexed relation defined as follows: for all e,e′ with ∆;Γ ` e : τ and
∆;Γ ` e′ : τ , we define ∆ | Γ ` e .CIU

⇓ e′ : τ if and only if

∀δ∈Type(∆), γ ∈Subst(Γ δ), E ∈ Stk (τδ) , E[e′γ]↑→ E[eγ]↑

Note again the order of terms e and e′ in the implication. �

It is simple to see that must-contextual approximation implies must-CIU
approximation. However the converse is not so simple to see. We will prove
it by constructing the logical relation and proving that all three relations
coincide.

Logical approximation relation

We now define the logical relation, internalising the definition in [23]. The
major difference is that instead of using must-termination and its stratified
version we use may-divergence and stratified may-divergence predicates.

Relational interpretation of types Given two closed types τ,τ ′ ∈ Type let

VRel (τ,τ ′) = P (Val (τ)×Val (τ ′))

TRel (τ,τ ′) = P (Tm (τ)×Tm (τ ′))

SRel (τ,τ ′) = P (Stk (τ)×Stk (τ ′)) .

We implicitly use the inclusion

VRel (τ,τ ′) ⊆ TRel (τ,τ ′) .

For a type variable context ∆we define VRel (∆) as the extension of VRel (·, ·).
We defined VRel (∆) to be the set

{(ϕ1,ϕ2,ϕr ) | ϕ1,ϕ2 : ∆→ Type,∀α ∈ ∆,ϕr(α) ⊆VRel (ϕ1(α),ϕ2(α))}

where the first two components give syntactic types for the left and right
hand sides of the relation and the third component is a relation between
those types.

The interpretation of types, ~· ` ·� is by induction on the judgement ∆ ` τ .
Given a judgement ∆ ` τ and ϕ ∈VRel (∆) the interpretation satisfies

~∆ ` τ� (ϕ) ⊆VRel (ϕ1(τ),ϕ2(τ))

where the ϕ1 and ϕ2 are the first two components of ϕ and ϕ1(τ) denotes
substitution of types in ϕ1 for free type variables in τ . It is defined in Fig-
ure 3.3 on page 89. For the sake of readability we omit the typing judgements
in each case, but they should be understood to be there.

The following lemmas are simple to prove.
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Lemma 3.B.5. ·>> is monotone and inflationary, i.e.

• For all r, r ⊆ r>>

• For all r, s, r ⊆ s→ r>> ⊆ s>>

♦

Lemma 3.B.6. Let r ∈VRel (τ,τ ′).

• If e
p,0
; e1 and e′

p
; e′1 then (e,e′) ∈ r>>↔ (e1, e

′
1) ∈ r>>.

• If e 1; e1 then for all e′ ∈ Tm (τ ′), if .((e1, e
′) ∈ r>>) then (e,e′) ∈ r>>.

♦

A crucial property of the interpretation of types is that it respects substi-
tution and weakening.

Lemma 3.B.7 (Substitution). Let ∆ ` τ and ∆,α ` σ . Then

~∆ ` σ [τ/α]� (ϕ) = ~∆,α ` σ� (ϕ [α 7→ ~∆ ` τ� (ϕ)]) .

♦

Lemma 3.B.8 (Weakening). Suppose ∆ ` τ . Then for all ϕ ∈ VRel (∆), s ∈
VRel (σ,σ ′) and for all α < ∆,

~∆ ` τ� (ϕ) = ~∆,α ` τ� (ϕ
[
α 7→ (σ,σ ′ , s)

]
) .

♦

The actual “logical relation” is defined on open terms by reducing it to
the above relations on closed terms by substitution. We first extend the in-
terpretation of types to the interpretation of contexts and define ~∆ ` Γ � (ϕ)
to be{

(γ,γ ′)
∣∣∣ γ,γ ′ : Valdom(Γ ),∀x ∈ dom(Γ ) , (γ(x),γ ′(x)) ∈ ~∆ ` Γ (x)� (ϕ)

}
.

Definition 3.B.9 (Logical relation). Two terms are logically related

∆;Γ ` e .log
⇓ e′ : τ

if

∀ϕ ∈VRel (∆) ,∀(γ,γ ′) ∈ ~∆ ` Γ � (ϕ), (eγ,e′γ ′) ∈ ~∆ ` τ� (ϕ)>>.

�
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Properties of relations

Definition 3.B.10 (Type-indexed relation). A type-indexed relation R is a set
of tuples (∆,Γ , e, e′ , τ) such that ∆ ` Γ , ∆ ` τ , ∆ | Γ ` e : τ and ∆ | Γ ` e′ : τ . We
write ∆;Γ ` eR e′ : τ for (∆,Γ , e, e′ , τ) ∈ R. �

Definition 3.B.11 (Precongruence). A type-indexed relation R is reflexive if
∆;Γ ` e : τ implies ∆;Γ ` e R e : τ . It is transitive if ∆;Γ ` e R e′ : τ and
∆;Γ ` e′ R e′′ : τ implies ∆;Γ ` e R e′′ : τ . It is compatible if it is closed under
the rules in Figure 3.8.

A precongruence is a reflexive, transitive and compatible type-indexed re-
lation. �

∆;Γ ` xR x : τ
x:τ ∈ Γ

∆;Γ ` 〈〉 R 〈〉 : 1

∆;Γ ` e1 R e′1 : τ1 ∆;Γ ` e2 R e′2 : τ2

∆;Γ ` 〈e1, e2〉 R 〈e′1, e
′
2〉 : τ1 × τ2

∆;Γ ,x:τ1 ` eR e′ : τ2

∆;Γ ` λx.eR λx.e′ : τ1→ τ2

∆;Γ ` eR e′ : τ1

∆;Γ ` inleR inle′ : τ1 +τ2

∆;Γ ` eR e′ : τ2

∆;Γ ` inreR inre′ : τ1 +τ2

∆;Γ ,x1:τ1 ` e1 R e′1 : τ ∆;Γ ,x2:τ2 ` e2 R e′2 : τ ∆;Γ ` e e′: τ1 +τ2

∆ Γ ` case (e,x1.e1,x2.e2)R case (e′ ,x1.e
′
1,x2.e

′
2) : τ

∆,α;Γ ` eR e′ : τ
∆;Γ `Λ.eRΛ.e′ : ∀α.τ

∆ ` τ1 ∆;Γ ` eR e′ : τ[τ1/α]

∆;Γ ` (packe)R (packe′) : ∃α.τ

∆;Γ ` e1 R e′1 : ∃α.τ1 ∆ ` τ ∆,α;Γ ,x : τ1 ` eR e′ : τ
∆;Γ ` (unpack e1 as x in e)R (unpack e′1 as x in e

′) : τ

∆;Γ ` eR e′ : τ1 × τ2

∆;Γ ` proji eR proji e′ : τi

∆;Γ ` e1 R e′1 : τ ′→ τ ∆;Γ ` e2 R e′2 : τ ′

∆;Γ ` e1 e2 R e′1 e
′
2 : τ

∆;Γ ` eR e′ : µα.τ
∆;Γ ` unfoldeR unfolde′ : τ[µα.τ/α]

∆;Γ ` eR e′ : τ[µα.τ/α]

∆;Γ ` foldeR folde′ : µα.τ

∆;Γ ` eR e′ : ∀α.τ
∆;Γ ` e[]R e′[] : τ[τ ′/α]

ftv(τ ′) ⊆ ∆
∆;Γ ` ?R ? : nat

Figure 3.8: Compatibility properties of type-indexed relations.
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The fundamental property

To prove the fundamental property (reflexivity) we start with some simple
properties relating evaluation contexts and relations. The proof of the com-
patibility properties in most of the cases will be a simple consequence of
these lemmas.

The following is a direct consequence of the fact that p→ .p for any p :Ω,
we only state it here for reference.

Lemma 3.B.12. The interpretations of types satisfy the following monotonicity
properties.

• If (v,v′) ∈ ~∆ ` τ� (ϕ) then . ((v,v′) ∈ ~∆ ` τ� (ϕ)).

• If (e,e′) ∈ ~∆ ` τ� (ϕ)>> then .
(
(e,e′) ∈ ~∆ ` τ� (ϕ)>>

)
.

• If (E,E′) ∈ ~∆ ` τ� (ϕ)> then .
(
(E,E′) ∈ ~∆ ` τ� (ϕ)>

)
.

♦

Lemma 3.B.13. If (v,v′) ∈ ~∆ ` τ1→ τ2� (ϕ) and (E,E′) ∈ ~∆ ` τ2� (ϕ)> then
(E ◦ (v []),E′ ◦ (v′ [])) ∈ ~∆ ` τ1� (ϕ)>. ♦

This follows directly from the definition of the interpretation of types,
Lemma 3.B.2 and Lemma 3.B.1.

Corollary 3.B.14. If (e,e′) ∈ ~∆ ` τ1� (ϕ)>> and (E,E′) ∈ ~∆ ` τ2� (ϕ)> then

(E ◦ ([]e),E′ ◦ ([]e′)) ∈ ~∆ ` τ1→ τ2� (ϕ)>.

♦

Proof. Take (v,v′) ∈ ~∆ ` τ1→ τ2� (ϕ). By Lemma 3.B.13 (E ◦ (v []),E′ ◦ (v′ []) ∈
~∆ ` τ1� (ϕ)> so using Lemma 3.B.1 we have

E′[v′ e′]↑→ E[v e] 7→

concluding the proof. QED

Corollary 3.B.15. If (e,e′) ∈ ~∆ ` τ1→ τ2� (ϕ)>> and (E,E′) ∈ ~∆ ` τ2� (ϕ)>

then (E ◦ ((λx.ex) []) ,E′ ◦ ((λx.e′ x) [])) ∈ ~∆ ` τ1� (ϕ)>. ♦

Proof. If (e,e′) ∈ ~∆ ` τ1→ τ2� (ϕ)>> then (λx.e,λx.e′) ∈ ~∆ ` τ1→ τ2� (ϕ). Use
Lemma 3.B.13. QED

Lemma 3.B.16. If (E,E′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)> then

(E ◦ (unfold []),E′ ◦ (unfold [])) ∈ ~∆ ` µα.τ� (ϕ)>.

♦
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Proof. Take

(foldv,foldv′) ∈ ~∆ ` µα.τ� (ϕ)

with

. ((v,v′) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)) .

Using Lemma 3.B.1, Lemma 3.B.5 and Lemma 3.B.6 we have

E′[unfold (foldv′)]↑↔ E′[v′]↑

which implies .(E′[v′]) which further implies .(E[v] 7→) which finally implies
E[unfold (foldv)] 7→ by definition of stratified may-divergence, concluding
the proof. QED

Lemma 3.B.17. If (E,E′) ∈ ~∆ ` µα.τ� (ϕ)> then

(E ◦ (fold []),E′ ◦ (fold [])) ∈ ~∆ ` τ[µα.τ/α]� (ϕ)>.

♦

Proof. Easily follows from the fact that if (v,v′) are related at the unfolded
type then (foldv,foldv′) are related at the folded type. QED

Lemma 3.B.18. If (E,E′) ∈ ~∆ ` ∃α.τ� (ϕ)> then for all ∆ ` τ1

(E ◦ (pack []),E′ ◦ (pack [])) ∈ ~∆ ` τ[τ1/α]� (ϕ)>.

♦

Proof. Take

(v,v′) ∈ ~∆ ` τ[τ1/α]� (ϕ).

Lemma 3.B.7 implies

(v,v′) ∈ ~∆,α ` τ� (ϕ [α 7→ ~∆ ` τ� (ϕ)])

which further means that (packv,packv′) ∈ ~∆ ` ∃α.τ� (ϕ) which is easily
seen to imply the conclusion. QED

Lemma 3.B.19. Let ∆ ` τ , (E,E′) ∈ ~∆ ` τ� (ϕ)>. If for all σ,σ ′ ∈ Type and
s ∈VRel (σ,σ ′) and for all (v,v′) ∈ ~∆,α ` τ1� (ϕ [α 7→ s]),

(e[v/x], e′[v′/x]) ∈ ~∆ ` τ� (ϕ)>>

then

(E ◦ (unpack [] as x in e),E′ ◦ (unpack [] as x in e′)) ∈ ~∆ ` ∃α.τ1� (ϕ)>.

♦
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Proof. Take (packv,packv′) ∈ ~∆ ` ∃α.τ1� (ϕ). This implies there exist σ,σ ′ ∈
Type and an s ∈ VRel (σ,σ ), such that (v,v′) ∈ ~∆,α ` τ1� (ϕ [α 7→ s]). An as-
sumption of this lemma further implies (e[v/x], e′[v′/x]) ∈ ~∆ ` τ� (ϕ)>>. It is
now easy to conclude the proof using Lemma 3.B.6. QED

The other lemmas concerning context composition are proved similarly.
The next lemma will be used to prove compatibility of ?.

Lemma 3.B.20. For all n ∈N, (n,n) ∈ ~` nat�. ♦

Proof. By induction on n.

n = 0 Then n = foldinl〈〉. It is easy to see that (inl〈〉,inl〈〉) ∈ ~` 1+nat�
and so the result follows by the definition of interpretation of recursive
types and Lemma 3.B.12.

n =m+ 1 Then n = foldinrm. By assumption

(m,m) ∈ ~` nat�

and so (inrm,inrm) ∈ ~` 1+nat�. The result easily follows by the def-
inition of interpretation of recursive types and Lemma 3.B.12. QED

We are now ready to prove that the logical approximation relation is com-
patible.

Proposition 3.B.21. The relation .log
⇓ is closed under all the rules in Figure 3.8,

i.e. it is compatible. ♦

Proof. We only show some cases. The general rule is that compatibility rules
are proved either by directly showing two values are related at the value re-
lation or relying on the above lemmas and extending the evaluation contexts.

• Introduction of recursive types.

∆;Γ ` e .log
⇓ e′ : τ[µα.τ/α]

∆;Γ ` folde .log
⇓ folde

′ : µα.τ

Take ϕ ∈ VRel (∆) and (γ,γ ′) ∈ ~∆ ` Γ � (ϕ). Let f = eγ and f ′ = e′γ ′.
We have to show (foldf ,foldf ′) ∈ ~∆ ` µα.τ�ϕ>>. So take (E,E′) ∈
~∆ ` µα.τ�ϕ>. By assumption (f , f ′) ∈ ~∆ ` τ[µα.τ/α]�ϕ>> so it suf-
fices to show (E ◦ (fold []),E′ ◦ fold []) ∈ ~∆ ` τ[µα.τ/α]�ϕ>, but this is
exactly the content of Lemma 3.B.17.
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• Elimination of recursive types.

∆;Γ ` e .log
⇓ e′ : µα.τ

∆;Γ ` unfolde .log
⇓ unfolde

′ : τ[µα.τ/α]

Exactly the same reasoning as in the previous case, only this time we
use Lemma 3.B.16 in place of Lemma 3.B.17.

• The ? expression.

∆;Γ ` ? .log
⇓ ? : nat

By Lemma 3.B.20 we have ∀n, (n,n) ∈ ~` nat�.
Take (E,E′) ∈ ~` nat�> and assume E′[?]↑. By definition of the ↑ re-
lation there exists an e′, ?; e′ and E[e′]↑. Inspecting the operational
semantics we see that e′ = n for some n ∈N. This implies E[n] 7→ which
further implies by Lemma 3.B.2 that E[?] 7→.

• Introduction of existential type.

∆ ` τ1 ∆;Γ ` e .log
⇓ e′ : τ[τ1/α]

∆;Γ ` packe .log
⇓ packe

′ : ∃α.τ

Take ϕ ∈VRel (∆) and (γ,γ ′) ∈ ~∆ ` Γ � (ϕ). Let f = eγ and f ′ = e′γ ′. We
need to show

(packf ,packf ′) ∈ ~∆ ` ∃α.τ� (ϕ)>>

Again by assumption (f , f ′) ∈ ~∆ ` τ[τ1/α]� (ϕ)>>. We can now use
Lemma 3.B.18 to finish the proof, as we did above for the case of in-
troduction of recursive types.

• Elimination of existential types.

∆;Γ ` e .log
⇓ e′ : ∃α.τ1 ∆ ` τ ∆,α;Γ ,x : τ1 ` e1 .

log
⇓ e′1 : τ

∆;Γ ` (unpack e as x in e1) .log
⇓ (unpack e′ as x in e′1) : τ

Take ϕ ∈ VRel (∆) and (γ,γ ′) ∈ ~∆ ` Γ � (ϕ). Let f = eγ and f ′ = e′γ ′,
f1 = e1γ , f ′1 = e′1γ . We need to show

(unpack f as x in f1,unpack f
′ as x in f ′1 ) ∈ ~∆ ` τ� (ϕ)>>.

The premise of this case shows that for all types σ,σ ′ ∈ Type and rela-
tions s ∈VRel (σ,σ ′), for all (v,v′) ∈ ~∆,α ` τ1� (ϕ [α 7→ s]), we have

(f1[v/x], f ′1 [v′/x]) ∈ ~∆,α ` τ� (ϕ [α 7→ s])>>
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and by Lemma 3.B.8 this is the same as for all σ,σ ′ ∈ Type, for all
s ∈VRel (σ,σ ′), for all (v,v′) ∈ ~∆,α ` τ1� (ϕ [α 7→ s]),

(f1[v/x], f ′1 [v′/x]) ∈ ~∆ ` τ� (ϕ)>>.

We now use Lemma 3.B.19 to conclude the proof. QED

Corollary 3.B.22 (Fundamental property of logical relations). If ∆;Γ ` e : τ
then ∆;Γ ` e .log

⇓ e : τ ♦

Proof. Every compatible relation is reflexive. This can be shown by an easy
induction on the typing derivation. Proposition 3.B.21 shows that the logical
relation is compatible, hence it is reflexive. QED

We need the next corollary to relate the logical approximation relation to
must-contextual approximation.

Corollary 3.B.23. For any expressions e,e′ and context C, if ∆ | Γ ` e .log
⇓ e′ : τ

and C : (∆ | Γ V τ)# (∆′ | Γ ′V σ ) then ∆′ | Γ ′ ` C[e] .log
⇓ C[e′] : τ ′. ♦

Proof. By induction on the judgement

C : (∆ | Γ V τ)# (∆′ | Γ ′V σ ),

using Proposition 3.B.21. QED

All three approximation relations coincide

We have already mentioned that it is easy to see that must-contextual ap-
proximation implies must-CIU approximation. We now show that must-CIU
approximation implies logical approximation.

We start with a lemma showing that the logical approximation relation is
closed under postcomposition with the must-CIU approximation relation.

Lemma 3.B.24. For any terms e, e′ and e′′ of type τ in context ∆ | Γ . If ∆ | Γ `
e .

log
⇓ e′ : and ∆ | Γ ` e′ .CIU

⇓ e′′ : τ then ∆ | Γ ` e .log
⇓ e′′ :. ♦

Proof. Take ϕ ∈ VRel (∆) and (γ,γ ′) ∈ ~∆ ` Γ � (ϕ). Take (E,E′) ∈ ~τ� (ϕ)> and
assume E′[e′′γ ′]↑. Since ∆ | Γ ` e′ .CIU

⇓ e′′ : τ we have E′[e′γ ′]↑ and since

∆ | Γ ` e .log
⇓ e′ : we further have E[eγ] 7→, concluding the proof. QED

Corollary 3.B.25. For any terms e and e′ of type τ in context ∆ | Γ . If ∆ | Γ `
e .CIU
⇓ e′ : τ then ∆ | Γ ` e .log

⇓ e′ :. ♦

Proof. By Corollary 3.B.22 we have that ∆ | Γ ` e .log
⇓ e :. The previous lemma

concludes the proof. QED
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The only missing link in the chain of inclusions is the implication from
the logical relation to contextual approximation. This, however, requires
some more work.

Adequacy

We wish to show soundness of the logical relation with respect to must-
contextual approximation. However, the implication

∆ | Γ ` e .log
⇓ e′ : τ→ ∆ | Γ ` e .ctx

⇓ e′ : τ

does not hold internally, due to the different divergence relations used in the
definition of the logical relation. To see precisely where the proof fails let us
attempt it. Let ∆ | Γ ` e .log

⇓ e′ : τ and take a well-typed closing context C

with result type σ . Then by Corollary 3.B.23, ∅ | ∅ ` C[e] .log
⇓ C[e′] : σ . Un-

folding the definition of the logical relation we get (C[e],C[e′]) ∈ ~∅ ` σ�>>.
It is easy to see that (−,−) ∈ ~∅ ` σ�> and so we get by definition of >> that
C[e′]↑ → C[e] 7→. However the definition of contextual equivalence requires
the implication C[e′]↑ → C[e]↑, which is not a consequence of the previous
one.

Intuitively, the gist of the problem is that ↑ defines a time-independent
predicate, whereas 7→ depends on the time, as explained in the introduction.
However, in the model in we can show the following rule is admissible.

Lemma 3.B.26. e : Tm | ∅ ` �(e 7→)→ e↑ holds in the logic. ♦

Thus we additionally assume this principle in our logic. Using this, we
are led to the following corrected statement of adequacy using the � modal-
ity.

Theorem 3.B.27 (Adequacy). If e and e′ are of type τ in context ∆ | Γ then
�(∆ | Γ ` e .log

⇓ e′ : τ) implies ∆ | Γ ` e .ctx
⇓ e′ : τ . ♦

To prove this theorem we first observe that all the lemmas used in the
proof of Corollary 3.B.23 are proved in constant contexts using only other
constant facts and so Corollary 3.B.23 can be strengthened. More precisely,
we can prove the following restatement.

Proposition 3.B.28. �[∀∆,∆′ ,Γ ,Γ ′ , τ,σ ,C,e, e′ ,C : (∆ | Γ V τ)# (∆′ | Γ ′V σ )
→ ∆ | Γ ` e .log

⇓ e′ : τ→ ∆′ | Γ ′ ` C[e] .log
⇓ C[e′] : τ ′]. ♦

Note that all the explicit universal quantification in the proposition is
over constant types. One additional ingredient we need to complete the
proof is the fact that ↑ is ¬¬-closed, i.e. e↑ ↔ ¬¬(e↑). We can show this
in the logic using the fact that ↑ is the greatest post-fixed point by showing
that ¬¬↑ is another one. This fact further means that �(e↑)↔ (e↑). We are
now ready to proceed with the proof of Theorem 3.B.27.
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Theorem 3.B.27. Continuing the proof we started above we get, using Propo-
sition 3.A.6, that �(C[e′]↑→ C[e] 7→) and thus also

�(C[e′]↑)→ �(C[e] 7→).

We have �(C[e′]↑)↔ C[e′]↑ and by Lemma 3.B.26 �(C[e] 7→)↔ C[e]↑. We can
thus conclude C[e′]↑→ C[e]↑, as required. QED

Using Proposition 3.A.25 and Proposition 3.A.24 we can see that for each
∆, Γ , e, e′ and τ ,

∆ | Γ ` e .ctx
⇓ e′ : τ↔¬¬(∆ | Γ ` e .ctx

⇓ e′ : τ)

and similarly

∆ | Γ ` e .CIU
⇓ e′ : τ↔¬¬(∆ | Γ ` e .CIU

⇓ e′ : τ).

Combining this observation with the above we have

Theorem 3.B.29. For any ∆, Γ , e, e′ and τ ,

∆ | Γ ` e .CIU
⇓ e′ : τ↔ ∆ | Γ ` e .ctx

⇓ e′ : τ↔ �(∆ | Γ ` e .log
⇓ e′ : τ)

♦

Proof. The only missing link is the implication from CIU approximation to
“boxed” logical approximation. However using the previous observation that
CIU approximation is ¬¬-closed with Corollary 3.B.25 and the fact that ¬¬
is the left adjoint to �, we get the desired implication. QED

Examples of the use of logical relation

We show the syntactic minimal invariance example. We start with two simple
lemmas.

Lemma 3.B.30. Let τ,σ ∈ Type, let e ∈ Tm (τ→ σ ), v ∈Val (τ→ σ ). Then

(e,v) ∈ ~τ→ σ�>>→ (λx.ex,v) ∈ ~τ→ σ� .

♦

Proof. By assumption v = λx.e′ for some x and e′. Take (u,u′) ∈ ~τ� and we’re
supposed to show (eu,e′[u′/x]) ∈ ~σ�>>. By Lemma 3.B.6 it suffices to show
(eu,v u′) ∈ ~σ�>> and this is a simple consequence of Corollary 3.B.14. QED

Lemma 3.B.31. Let τ,σ ∈ Type, let e ∈ Tm (τ→ σ ), v ∈Val (τ→ σ ). Then

(v,e) ∈ ~τ→ σ�>>→ (v,λx.ex) ∈ ~τ→ σ� .

♦
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Syntactic minimal invariance

Let fix : ∀α,β.((α→β)→(α→β))→ (α→β) be the term Λ.Λ.λf .δf (foldδf )
where δf is the term λy.let y′ = unfoldy in f (λx.y′ y x).

Consider the type τ = µα.nat + α → α. Let id = λx.x and consider the
term

f ≡ λh,x.case (unfoldx,y.fold (inly), g.fold (inrλy.h(g(hy)))) .

We show that fix[][]f �⇓ id : τ → τ . First we show that they either logi-
cally approximates the other and then use the fact that we have proved this
in the context of only constant facts to conclude that the statement always
holds. Thus we use Theorem 3.B.29 to conclude that the terms are contextu-
ally equivalent.

⇒ We first show by Löb induction that (fix[][]f , id) ∈ ~τ→ τ�>>. It is easy
to see that

fix[][]f
p,1
; λx.case (unfoldx,y.fold (inly), g.fold (inrλy.h(g(hy)))) .

where h = λx.δf (foldδf )x. Let

ϕ = λx.case (unfoldx,y.fold (inly), g.fold (inrλy.h(g(hy)))) .

We directly show that (ϕ, id) ∈ ~τ→ τ�which suffices by Lemma 3.B.12
and Lemma 3.B.6.

So take (u,u′) ∈ ~τ�. By the definition of the interpretation of recursive
types there are two cases

• u = fold (inln) and u′ = fold (inln) for some n ∈N. This case is
immediate.

• u = fold (inrg), u′ = fold (inrg ′) and .((g,g ′) ∈ ~τ→ τ�). We then

have that ϕu
p,1
; fold (inrλy.h(g(hy))) and idu′

p
; u′ and so it

suffices to show

. (λy. (h(g(hy)), g ′) ∈ ~τ→ τ�) .

We again show that these are related as values so take .((v,v′) ∈
~τ�) and we need to show .

(
(h(g(hv)), g ′ v′) ∈ ~τ�>>

)
. Take

.((E,E′) ∈ ~τ�>).

Löb induction hypothesis gives us

.((h′ , id) ∈ ~τ→ τ�>>),
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where h′ is the body of h, i.e h = λx.h′ x. By Lemma 3.B.30

.((h, id) ∈ ~τ→ τ�>>)

and so by using Lemma 3.B.13 three times we get

.
(
(E[h (g (h []))],E′[g ′ []]) ∈ ~τ�>

)
.

So assuming .(E′[g ′ v′]↑) we get .(E[h (g (hv))] 7→), concluding the
proof.

⇐ This direction is essentially the same, only using Lemma 3.B.31 in place
of Lemma 3.B.30.

Least prefixed point

We now prove the following recursion induction principle for the fixed-point
combinator. The rule is the same as in [23] and the proof is morally the
same, except that we replace induction on ordinals by Löb induction, thus
removing a lot of unnecessary bookkeeping. More precisely, we prove

∆ | Γ ` v .ctx
⇓ v′ : τ1→τ2

∆ | Γ ` fix[][]v .ctx
⇓ v′ : τ1→τ2

We do this in a few stages. For simplicity we only consider the case where
∆ and Γ are empty. The general case is proved in the same way.

It is easy to see that fix[][]v 1; v h where h = λx.δf (foldδf )x. We first
show (h,v′) ∈ ~τ1→ τ2� by Löb induction. So assume .((h,v′) ∈ ~τ1→ τ2�).
Since v′ is a value of the function type v′ = λy.e for some y and typeable
e. Take (u,u′) ∈ ~τ1� and (E,E′) ∈ ~τ2�

>. Then using Corollary 3.B.14, then
Corollary 3.B.22 applied to v and then Corollary 3.B.15 for v we have

(E[((λx.v x) −)u],E[((λx.v x) −)u]) ∈ ~τ1→ τ2�
>.

Using the assumption that v v′ approximates v′ and Theorem 3.B.29 we get

E′[v′ u′]↑→E′[(v v′)u′]↑

and thus

. (E′[(v v′)u′]↑)

and now using the induction hypothesis .((h,v′) ∈ ~τ1→ τ2�) and the fact
that (E[((λx.v x) −)u],E[((λx.v x) −)u]) ∈ ~τ1→ τ2�

> we get

. (E[(v h)u] 7→)
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and since hu 1; (v h)u we can use Lemma 3.B.2 to get

E[hu] 7→

concluding the proof.

Since the proof relies only on constant facts we have, using Theorem 3.B.29,
that h contextually approximates v′. Thus

fix[][]v .ctx
⇓ v h .ctx

⇓ v v′ .ctx
⇓ v′ .

Parametricity

We now characterise the values of type ∀α.α × α → α. We start by proving
some expected properties of values of the polymorphic and function types.

Lemma 3.B.32. Let α ` τ and v ∈ Val (∀α.τ). Then for all types σ,σ ′ and rela-
tions s ∈VRel (σ,σ ′) we have

(v[],v[]) ∈ ~α ` τ� (ϕ)>>

where ϕ maps α to (σ,σ ′ , s). ♦

Let Ω = ∀α.fix[](λf .f )〈〉 be the term of type ∀α.α that deterministically
diverges when instantiated (applied).

Lemma 3.B.33. Let v ∈Val (∀α.α ×α→ α). If v[] may-diverges then

∅ | ∅ ` v =ctx
⇓ ∀α.Ω[] : ∀α.α ×α→ α.

♦

Proof. This is a simple consequence of Lemma 3.B.39. QED

Lemma 3.B.34. Let v ∈ Val (∀α.α ×α→ α). If v[] does not may-diverge and
there exist a type τ and a value u ∈ Val (τ × τ) such that v[]u may-diverges then
for all types σ and for all values w ∈Val (σ × σ ), v[]w may-diverges and

∅ | ∅ ` v[]w =ctx
⇓ Ω[] : σ.

♦

Proof. It is obvious that Ω[] approximates v[]w for any w. For the other ap-
proximation we use Theorem 3.B.29.

By the canonical forms lemma u = 〈u1,u2〉 for some u1,u2 ∈ Val (τ). Let
w ∈ Val (σ × σ ). Again by the canonical forms lemma w = 〈w1,w2〉 for some
w1,w2 ∈ Val (σ ). Now let s = {(w1,u1), (w2,u2)} ∈ VRel (σ,τ). It is obvious
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that (w,u) ∈ s. Using Lemma 3.B.32 and the compatibility lemma for the
application we have (v[]w,v[]u) ∈ ~α ` α� (s)>>.7 Since the empty context is
always related to itself and v[]u↑ we have that v[]w 7→. Since Lemma 3.B.32 is
easily strengthened to a boxed one we thus have v[]w↑ using Lemma 3.B.26.

We have thus established that v[]w↑ for arbitrary w which implies that
it CIU-approximates any other term and thus using Theorem 3.B.29 we con-
clude the proof. QED

For the rest of the cases we need some properties of the ↑ relation which
we now prove.

Lemma 3.B.35. Let e ∈ Tm (τ). If ¬(e↑) then there exists a vVal (τ), such that
e;∗ v. ♦

Proof. We first prove by coinduction that the set

N =
{
e′ ∈Val (τ)

∣∣∣ ∀v ∈Val (τ) ,¬(e′;∗ v)
}

is included in ↑ using the universal property of ↑, i.e. that it is the greatest
post-fixed point.

Given e′ ∈ N we have to show there exists e′′ such that e′; e′′ and e′′ ∈ N .
By the progress lemma e′ is either a value or there exists an expression e′′

that e′ reduces to. Since e′ ∈ N it cannot be a value. Thus there exists an
expression e′′ such that e′; e′′. We have to show e′′ ∈ N . Suppose v ∈Val (τ)
and e′′;∗ v. Then e′;∗ v. A contradiction.

Thus N ⊆ ↑ and thus ¬↑ ⊆ ¬N . But e ∈ N ↔ ∀v ∈ Val (τ) ,¬(e′ ;∗ v)↔
¬(∃v ∈ Val (τ) , e ;∗ v) and since we can show using properties of ¬¬ that
∃v ∈Val (τ) , e;∗ v is ¬¬-closed we have proved the lemma. QED

In the rest of this section we define 2 = 1 + 1 to be the type of booleans.
We then write true = inl〈〉 and false = inr〈〉. By the canonical forms lemma
these are the only two closed values of this type.

Lemma 3.B.36. Let E ∈ Stk (2) and e ∈ Tm (2). Assume that E[false]↑ and
¬(E[true]↑). In this case if ¬(e;∗ false) and E[e]↑ then e↑. ♦

Proof. We prove this by coinduction. Let

N = {e ∈ Tm (2) | ¬(e;∗ false)∧E[e]↑}

and we wish to show that N ⊆ ↑. Suppose e ∈ N . We need to exhibit an e′,
such that e; e′ and e′ ∈ N . By the progress lemma e is either a value or steps
to some e′. First we observe that e cannot be a value since the only two values
are true and false. If e = false then e;∗ false and if e = true then E[e]↑ does
not hold by assumption on E.

7We abused the notation by writing s instead of a function that maps ϕ to (σ,τ, s), but the
meaning is clear.
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So e is not a value. By assumption E[e]↑ and so there exists e′′, such that
E[e] ; e′′ and e′′↑. Since e is not a value we have e′′ = E[e′] for some e′

such that e ; e′. For the first condition, suppose e′ ;∗ false. Then clearly
e;∗ false, a contradiction.

We have thus exhibited an e′, such that e; e′ and e′ ∈ N , thus concluding
the proof. QED

Naturally we can exchange the roles of true and false in the last lemma.
We record the next lemma for reference. The proof is by simple coinduction.

Lemma 3.B.37. If e′↑ and e;∗ e′ then e↑. ♦

We now prove the converse of Lemma 3.B.26 for well-typed expressions.

Lemma 3.B.38. Let τ ∈ Type and e ∈ Tm (τ). Then e↑→ �(e 7→). ♦

Proof. Using the fundamental theorem and the fact that �((−,−) ∈ ~∅ ` τ�>)
holds we have that �(e↑ → e 7→) which implies the lemma since � distributes
over implication in the correct direction. QED

Note that we cannot directly use Löb induction to prove that e↑ → e 7→

since we use two different step relations in the definitions of ↑ and 7→.
We record the functional extensionality property for values of the func-

tion type. The proof is the same as in [23] so we omit it.

Lemma 3.B.39. Let τ,σ ∈ Type, f ,g ∈Val (()τ→ σ ) and assume

∀u ∈Val (τ) ,∅ | ∅ ` f u =ctx
⇓ g u : σ.

Then

∅ | ∅ ` f =ctx
⇓ g : τ→ σ.

♦

We now have all the ingredients to prove the last case in the characteri-
sation of the values of type ∀α.α ×α→ α.

Lemma 3.B.40. Let v ∈ Val (∀α.α ×α→ α). Suppose that for all τ and for all
u ∈Val (τ × τ), ¬(v[]u↑). Then one of the following three cases holds.

1. ∀τ ∈ Type,∀x,y ∈Val (τ) ,∅ | ∅ ` v[]〈x,y〉 =ctx
⇓ y : τ

2. ∀τ ∈ Type,∀x,y ∈Val (τ) ,∅ | ∅ ` v[]〈x,y〉 =ctx
⇓ y : τ

3. ∀τ ∈ Type,∀x,y ∈Val (τ) ,∅ | ∅ ` v[]〈x,y〉 =ctx
⇓ x or y : τ

where x or y is the binary choice expression case (unfold?, .x, .y). ♦
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Proof. By Lemma 3.B.32 and the compatibility for application we have that
for any τ ∈ Type,

∀r ∈VRel (2, τ) ,∀(b,w) ∈ r × r, (v[]b,v[]w) ∈ r>> (3.4)

and

∀s ∈VRel (τ,2) ,∀(w,b) ∈ s × s, (v[]w,v[]b) ∈ s>> (3.5)

where we write r × r and s × s for the construction on value relations used to
interpret product types.

We consider 4 cases. In all cases let x,y ∈Val (τ) and let

s = {(x,true), (y,false)} ∈VRel (τ,2)

and

r = {(true,x), (false, y)} ∈VRel (2, τ) .

• Suppose v[]〈true,false〉;∗ true and v[]〈true,false〉;∗ false. We will
show that in this case ∀τ ∈ Type,∀x,y ∈ Val (τ) ,∅ | ∅ ` v[]〈x,y〉 =ctx

⇓ x or
y : τ and we do this by establishing CIU-equivalence. We prove two
approximations.

– Take a well-typed evaluation context E and assume E[x or y]↑. We
need to show that E[v[]〈x,y〉]↑. E[x or y]↑ implies that at least
one of E[x]↑, E[y]↑ holds. Without loss of generality suppose that
E[x]↑. Lemma 3.B.38 implies that (E, (λx.if z thenΩ[] else z) −) ∈
~s�>. Using Lemma 3.B.37 and the assumption that

v[]〈true,false〉;∗ true

we have that

(λx.if z then Ω[] else z) (v[]〈true,false〉)↑.

Hence we have from (3.5) that E[v[]〈x,y〉] 7→ which we can improve
to E[v[]〈x,y〉]↑ using Lemma 3.B.26 and the fact that we only used
constant properties to prove it (in particular, s and r are ¬¬-closed
relations).

– Take a well-typed evaluation context E and assume E[v[]〈x,y〉]↑.
We need to show E[x or y]↑ and using Lemma 3.B.37 it suffices
to show that either E[x]↑ or E[y]↑. Assume for the sake of contra-
diction that the negation holds. Since in intuitionistic logic ¬(P ∨
Q)↔ ¬P ∧¬Q holds we have that neither of E[x] and E[y] may-
diverges. This together with the assumption E[v[]〈x,y〉]↑ means
that (−,E) ∈ r>. Using (3.4) and Lemma 3.B.26 this implies that
v[]〈true,false〉↑, contradicting the assumption of the lemma. Thus
we have proved ¬¬E[x or y]↑ and since may-divergence is ¬¬-
closed also E[x or y]↑.
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• Suppose v[]〈true,false〉;∗ true and not v[]〈true,false〉;∗ false. We
will show that in this case ∀τ ∈ Type,∀x,y ∈ Val (τ) ,∅ | ∅ ` v[]〈x,y〉 =ctx

⇓
x : τ and we again do this by establishing CIU-equivalence using two
approximations.

– Take a well-typed evaluation context E and assume that E[x]↑. We
are to show E[v[]〈x,y〉]↑. E[x]↑ implies, using Lemma 3.B.38, that
(E, (λz.if z thenΩ[] else z) −) ∈ s>. Using (3.5) and Lemma 3.B.37
we thus have that E[v[]〈x,y〉]↑. Note that in this direction we have
not used the assumption that v[]〈true,false〉 does not evaluate to
false. We shall need it in the other direction, however.

– Take a well-typed evaluation context E and assume E[v[]〈x,y〉]↑.
We are to show E[x]↑. Assume the converse for the sake of contra-
diction. This then means that ((λz.if z then z else Ω[]) −,E) ∈ r>.
Using this and (3.4) we have that

(λz.if z then z else Ω[])v[]〈true,false〉↑.

We now use Lemma 3.B.36 to conclude that v[]〈true,false〉↑ (note
that here is the place where we used the assumption that

v[]〈true,false〉

does not reduce to false). However this contradicts the assump-
tion that v[]〈true,false〉 does not may-diverge. We have thus es-
tablished ¬¬(E[x]↑) and so E[x]↑.

• Suppose v[]〈true,false〉 ;∗ false and not v[]〈true,false〉 ;∗ true. In
this case ∀τ ∈ Type,∀x,y ∈ Val (τ) ,∅ | ∅ ` v[]〈x,y〉 =ctx

⇓ y : τ . The proof is
completely analogous to the previous case so we omit the details.

• Suppose v[]〈true,false〉 evaluates to neither true nor false. We claim
that this case is impossible. Indeed, by assumption v[]〈true,false〉 does
not may-diverge. By Lemma 3.B.35 there is a value z ∈Val (2) such that
v[]〈true,false〉;∗ z. However by the canonical forms lemma we z must
be either true or false. A contradiction.

We claim that the four cases we have considered cover everything. As a
consequence of Lemma 3.A.27 we have for any two expressions e and e′, that
either e;∗ e′ or ¬(e;∗ e′). In particular we have v[]〈true,false〉;∗ false or
not and v[]〈true,false〉;∗ true or not, which give exactly the four cases we
have considered. QED

3.C View From the Outside

We now sketch the interpretation of the types and relations defined in the
internal language of Sh (ω1) in the category Set.
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Interpretation of the model

Types The set of terms, types and evaluation contexts can be constructed
as initial algebras of polynomial functors, hence are preserved by ∆, so Val =
∆ (Val), Tm = ∆ (Tm) and ∆ (Stk) (here Tm, Stk and Val are sets of expres-
sions, evaluation contexts and values defined in Set). Moreover, since the
initial algebra structure is preserved, in particular catamorphisms are pre-
served. Thus, functions from constant sets to constant sets “defined by in-
duction” on, say Stk are the ones coming from Set.

Predicates The basic evaluation relation 7−→ can be defined by a simple
case analysis on the set of closed expressions. More precisely it can be de-
fined in the geometric fragment of first-order logic as a predicate on constant
sets, since the type of closed terms is constant and ∆ preserves products.
Thus if 7−→ is the basic one-step relation defined in Set, then 7−→= ∆ (7−→).
The one-step reduction relation; can be defined using 7−→ using a function
from evaluation contexts and closed expressions to closed expressions, which
“plugs the hole”. This function can be defined by induction on the structure
of the evaluation context, technically as a function from Stk to TmTm and
since ∆ also preserves exponentials, TmTm is constant. Thus this function
arises from the analogous function in Set.

Thus ; is a constant predicate. The transitive closure of ;, the relation

;∗ is also constant by Lemma 3.A.27. Similarly, the relations 1;,
p
; ..., can

be defined positively by starting with a smaller 7−→ relation and by relational
composition. It is easy to see that composing two constant relations gives a
constant relation. Thus, all the step relations are constant and equivalent to
the inclusion by ∆ of analogous relations defined in sets.

Interpretation of ↑ ↑ is defined internally as the greatest fixed point of Φ
given as Φ(m) = {e : Tm | ∃e′ , e; e′ ∧m(e′)} . Thus it satisfies

∀e : Tm, e↑↔ ∃e′ , e; e′ ∧ e′↑

and is the largest predicate that satisfies this formula. We will now show
that ↑ = ∆↑, where ↑ is the may-divergence relation defined in Set. We use
Kripke-Joyal forcing semantics.

Suppose ν is a successor ordinal. Let e ∈ Tm(ν). Thus e ∈ Tm and by
Kripke-Joyal we have

ν 
 e↑ iff ∃e′ ∈ Tm,ν 
 e; e′ and ν 
 e′↑

As we described above, ν 
 e; e′ if and only if e;e′ this implies that at each
successor ordinal8 ν, ↑(ν) is a fixed point of

Φ ′(S) =
{
e : Tm

∣∣∣ ∃e′ , e; e′ ∧ e′ ∈ S
}

8To see the need for assuming that ν is a successor ordinal see the Kripke-Joyal semantics
of existentials for limit ordinals.
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defined in Set. Since ↑ is defined as the greatest fixed point ofΦ ′ we have that

for all successor ordinals ν, ↑(ν) ⊆ ↑, thus ↑ ≤ ∆
(
↑
)
. It is easy to see (same

sequence of steps we did just now) that ∆
(
↑
)

is a fixed point of Φ . Hence,

↑ ≥ ∆
(
↑
)

and so ↑ = ∆
(
↑
)
.

It is easy to see that ↑ is exactly the complement of the must-termination
predicate ⇓ defined in [23].

Interpretation of the stratified may-divergence predicate The predicate 7→

is defined internally as the unique fixed point of Ψ given as

Ψ (m) =
{
e : Tm

∣∣∣∣ ∃e′ , e 1; e′ ∧m(e′)
}
.

For a successor ordinal ν we thus have that

ν 
 e 7→ iff ∃e
′ ∈ Tm,ν 
 e 1; e′ and for all β < ν,β 
 e′ 7→

Since for ν ≥ 1 ν 
 e 1; e′ means that externally e 1;e′ this is exactly the
same as the definition of 7→ given in Section 3.B.

Thus,

7→(ν) =
{
e ∈ Tm

∣∣∣∣ ∃e′ ∈ Tm, e 1;e′ ∧∀β < ν,e′ ∈ 7→(β)
}

which is exactly the pointwise negation of the stratified must-termination
predicate {⇓β} defined in [23], i.e. ⇓cβ= 7→(β).

Proposition 3.C.1.
ω1⋂
ν=1

7→(β) ⊆ ↑

♦

Proof. Since ⇓cβ= 7→(β) and ↑ =⇓c we have

ω1⋂
ν=1

7→(β) ⊆ ↑ ↔
ω1⋂
ν=1

⇓cβ⊆⇓
c ↔

 ω1⋃
ν=1

⇓β

c ⊆⇓c ↔ ⇓⊆ (
ω1⋃
ν=1

⇓β)

and the last inclusion holds by [23, Lemma 5.2] (to be completely precise we
cannot immediately apply the same lemma, since we have a slightly different
language, but the proof is exactly the same). QED

Note that this last proposition would not hold, were we to interpret the
construction in the topos of trees S , since we would only take the intersection
of the first ω approximations. Thus, we need to work in the topos Sh (ω1).

As a consequence, we can add the following principle to our logic

e : Tm | ∅ ` �(e 7→)→ e↑

which enables us to prove adequacy of the logical relation with respect to
contextual must-approximation.
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↑ is constant Using Proposition 3.A.23 we have that ↑ is ¬¬-closed. From
this it follows that �↑ = ↑, hence ↑ is constant.





Chapter 4

Programming and Reasoning
with Guarded Recursion for
Coinductive Types

This chapter is an extended version of

Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars
Birkedal.

Programming and reasoning with guarded recursion for coinduc-
tive typeso.

In Foundations of Software Science and Computation Structures -
18th International Conference, FoSSaCS 2015, pages 407–421, 2015.

Abstract

We present the guarded lambda-calculus, an extension of the simply
typed lambda-calculus with guarded recursive and coinductive types.
The use of guarded recursive types ensures the productivity of well-
typed programs. Guarded recursive types may be transformed into
coinductive types by a type-former inspired by modal logic and Atkey-
McBride clock quantification, allowing the typing of acausal functions.
We give a call-by-name operational semantics for the calculus, and de-
fine adequate denotational semantics in the topos of trees. The ade-
quacy proof entails that the evaluation of a program always terminates.
We demonstrate the expressiveness of the calculus by showing the de-
finability of solutions to Rutten’s behavioural differential equations. We
introduce a program logic with Löb induction for reasoning about the
contextual equivalence of programs.
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4.1 Introduction

The problem of ensuring that functions on coinductive types are well-de-
fined has prompted a wide variety of work into productivity checking, and
rule formats for coalgebra. Guarded recursion [34] guarantees productivity
and unique solutions by requiring that recursive calls be nested under a con-
structor, such as cons (written ::) for streams. This can sometimes be estab-
lished by a simple syntactic check, as for the stream toggle and binary stream
function interleave below:

toggle = 1 :: 0 :: toggle

interleave (x :: xs) ys = x :: interleave ys xs

Such syntactic checks, however, are often too blunt and exclude many valid
definitions. For example the regular paperfolding sequence, the sequence of
left and right turns (encoded as 1 and 0) generated by repeatedly folding
a piece of paper in half, can be defined via the function interleave as fol-
lows [43]:

paperfolds = interleave toggle paperfolds

This definition is productive, but the putative definition below, which also
applies interleave to two streams and so apparently is just as well-typed, is
not:

paperfolds’ = interleave paperfolds’ toggle

This equation is satisfied by any stream whose tail is the regular paperfolding
sequence, so lacks a unique solution. Unfortunately the syntactic productiv-
ity checker of the proof assistant Coq [45] will reject both definitions.

A more flexible approach, first suggested by Nakano [72], is to guarantee
productivity via types. A new modality, for which we follow Appel et al. [9]
by writing I and using the name ‘later’, allows us to distinguish between
data we have access to now, and data which we have only later. This I must
be used to guard self-reference in type definitions, so for example guarded
streams of natural numbers are defined by the guarded recursive equation

Strg ,N×IStrg

asserting that stream heads are available now, but tails only later. The type of
interleave will be Strg→ IStrg→ Strg, capturing the fact the (head of the) first
argument is needed immediately, but the second argument is needed only
later. In term definitions the types of self-references will then be guarded
by I also. For example interleavepaperfolds′ toggle becomes ill-formed, as the
paperfolds′ self-reference has type IStrg, rather than Strg, but

interleave toggle paperfolds
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will be well-formed.
Adding I alone to the simply typed λ-calculus enforces a discipline more

rigid than productivity. For example the obviously productive stream func-
tion

every2nd (x :: x’ :: xs) = x :: every2nd xs

cannot be typed because it violates causality [57]: elements of the result
stream depend on deeper elements of the argument stream. In some settings,
such as reactive programming, this is a desirable property, but for produc-
tivity guarantees alone it is too restrictive. We need the ability to remove I
in a controlled way. This is provided by the clock quantifiers of Atkey and
McBride [11], which assert that all data is available now. This does not triv-
ialise the guardedness requirements because there are side-conditions con-
trolling when clock quantifiers may be introduced. Moreover clock quanti-
fiers transform guarded recursive types into first-class coinductive types, with
guarded recursion defining the rule format for their manipulation.

Our presentation departs from Atkey and McBride’s [11] by regarding
the ‘everything now’ operator as a unary type-former, written � and called
‘constant’, rather than a quantifier. Observing that the types �A → A and
�A → ��A are always inhabited allows us to see the type-former, via the
Curry-Howard isomorphism, as an S4 modality, and hence base our opera-
tional semantics on the established typed calculi for intuitionistic S4 (IS4)
of Bierman and de Paiva [17]. This is sufficient to capture all examples in
the literature, which use only one clock; for examples that require multiple
clocks we suggest extending our calculus to a multimodal logic.

In this paper we present the guarded λ-calculus, gλ, extending the simply
typed λ-calculus with coinductive and guarded recursive types. We define
call-by-name operational semantics, which blocks non-termination via recur-
sive definitions unfolding indefinitely. We define adequate denotational se-
mantics in the topos of trees [22] and as a consequence prove normalisation.
We introduce a program logic Lgλ for reasoning about the denotations of
gλ-programs; given adequacy this permits proofs about the operational be-
haviour of terms. The logic is based on the internal logic of the topos of trees,
with modalities .,� on predicates, and Löb induction for reasoning about
functions on both guarded recursive and coinductive types. We demonstrate
the expressiveness of the calculus by showing the definability of solutions to
Rutten’s behavioural differential equations [83], and show that Lgλ can be
used to reason about them, as an alternative to standard bisimulation-based
arguments.

We have implemented the gλ-calculus in Agda, a process we found help-
ful when fine-tuning the design of our calculus. The implementation, with
many examples, is available at http://cs.au.dk/˜hbugge/gl-agda.zip.

http://cs.au.dk/~hbugge/gl-agda.zip
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4.2 Guarded λ-calculus

This section presents the guarded λ-calculus, written gλ, its call-by-name
operational semantics, and its types, then gives some examples.

Definition 4.2.1. gλ-terms are given by the grammar

t ::= x | 〈〉 | zero | succ t | 〈t, t〉 | πdt | λx.t | tt | fold t | unfold t
| next t | prevσ.t | boxσ.t | unbox t | t ~ t

where d ∈ {1,2}, x is a variable and σ = [x1 ← t1, . . . ,xn ← tn], usually abbre-
viated [~x← ~t], is a list of variables paired with terms.

prev[~x ← ~t].t and box[~x ← ~t].t bind all variables of ~x in t, but not in ~t.
We write prev ι.t for prev[~x ← ~x].t where ~x is a list of all free variables of
t. If furthermore t is closed we simply write prev t. We will similarly write
box ι.t and box t. We adopt the convention that prev and box have highest
precedence. �

We may extend gλ with sums; for space reasons we leave these to Ap-
pendix 4.C.

Definition 4.2.2. The reduction rules on closed gλ-terms are

πd〈t1, t2〉 7→ td (d ∈ {1,2})
(λx.t1)t2 7→ t1[t2/x]

unfold fold t 7→ t
prev[~x← ~t].t 7→ prev t[~t/~x] (~x non-empty)

prev next t 7→ t
unbox(box[~x← ~t].t) 7→ t[~t/~x]

next t1 ~ next t2 7→ next(t1t2)

�

The rules above look like standard β-reduction, removing ‘roundabouts’
of introduction then elimination, with the exception of those regarding prev
and next. An apparently more conventional β-rule for these term-formers
would be

prev[~x← ~t].(next t) 7→ t[~t/~x]

but where ~x is non-empty this would require us to reduce an open term to
derive next t. We take the view that reduction of open terms is undesirable
within a call-by-name discipline, so first apply the substitution without elim-
inating prev.

The final rule is not a true β-rule, as ~ is neither introduction nor elimina-
tion, but is necessary to enable function application under a next and hence
allow, for example, manipulation of the tail of a stream. It corresponds to the
‘homomorphism’ equality for applicative functors [69].

We next impose our call-by-name strategy on these reductions.
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∇,α ` α ∇ ` 1 ∇ `N

∇ ` A1 ∇ ` A2

∇ ` A1 ×A2

∇ ` A1 ∇ ` A2

∇ ` A1→ A2

∇,α ` A
∇ ` µα.A

α guarded inA
∇ ` A
∇ ` IA

· ` A
∇ ` �A

Figure 4.1: Type formation for the gλ-calculus

Definition 4.2.3. Values are terms of the form

〈〉 | succn zero | 〈t, t〉 | λx.t | fold t | boxσ.t | next t

where succn is a list of zero or more succ operators, and t is any term. �

Definition 4.2.4. Evaluation contexts are defined by the grammar

E ::= · | succE | πdE | Et | unfoldE | prevE | unboxE | E ~ t | v ~E

�

If we regard ~ as a variant of function application, it is surprising in a
call-by-name setting to reduce on both its sides. However both sides must
be reduced until they have main connective next before the reduction rule
for ~ may be applied. Thus the order of reductions of gλ-terms cannot be
identified with the call-by-name reductions of the corresponding λ-calculus
term with the novel connectives erased.

Definition 4.2.5. Call-by-name reduction has format E[t] 7→ E[u], where t 7→ u
is a reduction rule. From now the symbol 7→ will be reserved to refer to call-
by-name reduction. We use for the reflexive transitive closure of 7→. �

Lemma 4.2.6. The call-by-name reduction relation 7→ is deterministic. ♦

Definition 4.2.7. gλ-types are defined inductively by the rules of Figure 4.1.
∇ is a finite set of type variables. A variable α is guarded in a type A if all
occurrences of α are beneath an occurrence of I in the syntax tree. We
adopt the convention that unary type-formers bind closer than binary type-
formers. �

Note the side condition on the µ type-former, and the prohibition on �A
for open A, which can also be understood as a prohibition on applying µα to
any α with � above it. The intuition for these restrictions is that unique fixed
points exist only where the variable is displaced in time by a I, but � cancels
out this displacement by giving ‘everything now’.
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Γ ,x : A ` x : A Γ ` 〈〉 : 1 Γ ` zero : N

Γ ` t : N

Γ ` succ t : N

Γ ` t1 : A Γ ` t2 : B

Γ ` 〈t1, t2〉 : A×B
Γ ` t : A1 ×A2

Γ ` πdt : Ad

Γ ,x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t1 : A→ B Γ ` t2 : A

Γ ` t1t2 : B

Γ ` t : A[µα.A/α]

Γ ` fold t : µα.A

Γ ` t : µα.A

Γ ` unfold t : A[µα.A/α]

Γ ` t : A

Γ ` next t : IA

x1 : A1, . . . ,xn : An ` t : IA
Γ ` t1 : A1 · · · Γ ` tn : An
Γ ` prev[x1← t1, . . . ,xn← tn].t : A

A1, . . . ,An constant

x1 : A1, . . . ,xn : An ` t : A Γ ` t1 : A1 · · · Γ ` tn : An
Γ ` box[x1← t1, . . . ,xn← tn].t : �A

A1, . . . ,An constant

Γ ` t : �A

Γ ` unbox t : A

Γ ` t1 : I(A→ B) Γ ` t2 : IA

Γ ` t1 ~ t2 : IB

Figure 4.2: Typing rules for the gλ-calculus

Definition 4.2.8. The typing judgments are given in Figure 4.2. There d ∈
{1,2}, and the typing contexts Γ are finite sets of pairs x : Awhere x is a variable
and A a closed type. Closed types are constant if all occurrences of I are
beneath an occurrence of � in their syntax tree. �

The constant types exist ‘all at once’, due to the absence of I or presence
of �; this condition corresponds to the freeness of the clock variable in Atkey
and McBride [11] (recalling that we use only one clock in this work). Its
use as a side-condition to �-introduction in Figure 4.2 recalls (but is more
general than) the ‘essentially modal’ condition for natural deduction for IS4
of Prawitz [80]. The term calculus for IS4 of Bierman and de Paiva [17],
on which this calculus is most closely based, uses the still more restrictive
requirement that � be the main connective. This would preclude some func-
tions that seem desirable, such as the isomorphism λn.box ι.n : N→ �N.

In examples prev usually appears in its syntactic sugar forms

x1 : A1, . . . ,xn : An ` t : IA

Γ ,x1 : A1, . . . ,xn : An ` prev ι.t : A
A1, . . . ,An constant

` t : IA

Γ ` prev t : A

and similarly for box; the more general form is nonetheless necessary because
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(prev ι.t)[~u/~x] = prev[~x ← ~u].t. Getting substitution right in this setting is
somewhat delicate. For example our reduction rule prev[~x← ~t].t 7→ prev t[~t/~x]
breaches subject reduction on open terms (but not for closed terms). See
Bierman and de Paiva [17] for more discussion of substitution with respect
to IS4.

Lemma 4.2.9 (Subject Reduction). ` t : A and t u implies ` u : A. ♦

Example 4.2.10.

(i) The type of guarded recursive streams of natural numbers, Strg, is de-
fined as µα.N×Iα. These provide the setting for all examples below,
but other definable types include infinite binary trees, as µα.N×Iα ×
Iα, and potentially infinite lists, as µα.1+(N×Iα).

(ii) We define guarded versions of the stream functions cons (written infix
as ::), head, and tail as obvious:

:: , λn.λs. fold〈n,s〉 : N→ IStrg→ Strg

hdg , λs.π1 unfolds : Strg→N tlg , λs.π2 unfolds :: Strg→ IStrg

then use the ~ term-former for observations deeper into the stream:

2ndg , λs.(nexthdg)~ (tlg s) : Strg→ IN
3rdg , λs.(next2ndg)~ (tlg s) : Strg→ IIN · · ·

(iii) Following Abel and Vezzosi [2, Sec. 3.4] we may define a fixed point
combinator fix with type (IA→ A)→ A for any A. We use this to define
a stream by iteration of a function: iterate takes as arguments a natural
number and a function, but the function is not used until the ‘next’ step
of computation, so we may reflect this with our typing:

iterate , λf .fixλg.λn.n :: (g ~ (f ~ nextn)) : I(N→N)→N→ Strg

We may hence define the guarded stream of natural numbers

nats , iterate (nextλn.succn)zero .

(iv) With interleave, following our discussion in the introduction, we again
may reflect in our type that one of our arguments is not required until
the next step, defining the term interleave as:

fixλg.λs.λt.(hdg s) :: (g ~ t ~ next(tlg s)) : Strg→ IStrg→ Strg

This typing decision is essential to define the paper folding stream:

toggle , fixλs.(succzero) :: (next(zero ::s))
paperfolds , fixλs. interleavetoggle s
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Note that the unproductive definition with interleaves toggle cannot be
made to type check: informally, s : IStrg cannot be converted into a Strg

by prev, as it is in the scope of a variable s whose type Strg is not con-
stant. To see a less articifial non-example, try to define a filter function
on streams which eliminates elements that fail some boolean test.

(v) µ-types are in fact unique fixed points, so carry both final coalgebra and
initial algebra structure. To see the latter, observe that we can define

foldr , fixλgλf .λs.f 〈hdg s,g ~ nextf ~ tlg s〉 : ((N×IA)→ A)→ Strg→ A

and hence for example mapg h : Strg→ Strg is foldrλx.(hπ1x) :: (π2x).

(vi) The � type-former lifts guarded recursive streams to real coinductive
streams, as we will make precise in Ex. 4.3.4. Let Str , �Strg. We define

hd : Str→Nand tl : Str→ Str

by

hd = λs.hdg(unboxs)

and

tl = λs.box ι.prev ι. tlg(unboxs),

and hence define observations deep into streams whose results bear no
trace of I, for example 2nd , λs.hd(tls) : Str→N.

In general boxed functions lift to functions on boxed types by

lim , λf .λx.box ι.(unboxf )(unboxx) : �(A→ B)→ �A→ �B

(vii) The more sophisticated acausal function every2nd : Str→ Strg is

fixλg.λs.(hds) :: (g ~ (next(tl(tls)))).

Note that it must take a coinductive stream Str as argument. The func-
tion with coinductive result type is then λs.box ι.every2nds : Str→ Str.

�

4.3 Denotational Semantics and Normalisation

This section gives denotational semantics for gλ-types and terms, as objects
and arrows in the topos of trees [22], the presheaf category over the first
infinite ordinal ω (we give a concrete definition below). These semantics
are shown to be sound and, by a logical relations argument, adequate with
respect to the operational semantics. Normalisation follows as a corollary of
this argument. Note that for space reasons many proofs, and some lemmas,
appear in Appendix 4.A.
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Definition 4.3.1. The topos of trees S has, as objects X, families of sets X1,X2,
. . . indexed by the positive integers, equipped with families of restriction func-
tions rXi : Xi+1 → Xi indexed similarly. Arrows f : X → Y are families of
functions fi : Xi → Yi indexed similarly obeying the naturality condition
fi ◦ rXi = rYi ◦ fi+1. �

S is a cartesian closed category with products defined pointwise. Its ex-
ponential AB has, as its component sets (AB)i , the set of i-tuples (f1 : A1 →
B1, . . . , fi : Ai → Bi) obeying the naturality condition, and projections as re-
striction functions.

Definition 4.3.2.

• The category of sets Set is a full subcategory of S via the functor ∆ :
Set → S with (∆Z)i = Z, r∆Zi = idZ , and (∆f )i = f . Objects in this
subcategory are called constant objects. In particular the terminal object
1 of S is ∆{∗} and the natural numbers object is ∆N;

• ∆ is left adjoint to homS (1,–); write � for ∆ ◦homS (1, -) : S → S . unbox :
� →̇ idS is the counit of the resulting comonad. Concretely unboxi(x) =
xi , i.e. the i’th component of x : 1→ X applied to ∗;

• I : S → S is defined by (IX)1 = {∗} and (IX)i+1 = Xi , with rIX1 defined
uniquely and rIXi+1 = rXi . Its action on arrows f : X → Y is (If )1 = id{∗}
and (If )i+1 = fi . The natural transformation next : idS →̇ I has next1
unique and nexti+1 = rXi for any X.

�

Definition 4.3.3. We interpet types in context ∇ ` A, where ∇ contains n free
variables, as functors ~∇ ` A� : (Sop × S)n → S , usually written ~A�. This
mixed variance definition is necessary as variables may appear negatively or
positively.

• ~∇,α ` α� is the projection of the objects or arrows corresponding to
positive occurrences of α, e.g. ~α� ( ~W ,X,Y ) = Y ;

• ~1� and ~N� are the constant functors ∆{∗} and ∆N respectively;

• ~A1 ×A2� ( ~W ) = ~A1� ( ~W )× ~A2� ( ~W ) and likewise for S-arrows;

• ~A1→ A2� ( ~W ) = ~A2� ( ~W )~A2�( ~W ′) where ~W ′ is ~W with odd and even
elements switched to reflect change in polarity, i.e.

(X1,Y1, . . .)
′ = (Y1,X1, . . .);

• ~IA� ,~�A� are defined by composition with the functors I,� (Defini-
tion 4.3.2).
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• ~µα.A� ( ~W ) = Fix(F), where F : (Sop × S) → S is the functor given by
F(X,Y ) = ~A� ( ~W ,X,Y ) and Fix(F) is the unique (up to isomorphism)
X such that F(X,X) � X. The existence of such X relies on F being a
suitably locally contractive functor, which follows by Birkedal et al [22,
Sec. 4.5] and the fact that � is only ever applied to closed types. This
restriction on � is necessary because the functor � is not strong.

�

Example 4.3.4. ~Strg�i = N
i , with projections as restriction functions, so is

an object of approximations of streams – first the head, then the first two
elements, and so forth. ~Str�i = N

ω at all levels, so is the constant object of
streams. More generally, any polynomial functor F on Set can be assigned a
gλ-type AF with a free type variable α that occurs guarded. The denotation
of �µα.AF is the constant object of the carrier of the final coalgebra for F [71,
Theorem 2]. �

Lemma 4.3.5. The interpretation of a recursive type is isomorphic to the inter-
pretation of its unfolding: ~µα.A� ( ~W ) � ~A[µα.A/α]� ( ~W ). ♦

Lemma 4.3.6. Closed constant types denote constant objects in S . ♦

Note that the converse does not apply; for example ~I1� is a constant
object.

Definition 4.3.7. We interpret typing contexts Γ = x1 : A1, . . . ,xn : An as S-
objects ~Γ � , ~A1� × · · · × ~An� and hence interpret typed terms-in-context
Γ ` t : A as S-arrows ~Γ ` t : A� : ~Γ �→ ~A� (usually written ~t�) as follows.

~x� is the projection ~Γ � × ~A� → ~A�. ~zero� and ~succ t� are as obvi-
ous. Term-formers for products and function spaces are interpreted via the
cartesian closed structure of S . Exponentials are not pointwise, so we give
explicitly:

• ~λx.t�i (γ)j maps a 7→ ~Γ ,x : A ` t : B�j (γ�j , a), where γ�j is the result of
applying restriction functions to γ ∈ ~Γ �i to get an element of ~Γ �j ;

• ~t1t2�i (γ) = (~t1�i (γ)i) ◦ ~t2�i (γ);

~fold t� and ~unfold t� are defined via composition with the isomorphisms of
Lemma 4.3.5. ~next t� and ~unbox t� are defined by composition with the
natural transformations introduced in Definition 4.3.2. The final three cases
are

• ~prev[x1← t1, . . .].t�i (γ) , ~t�i+1 (~t1�i (γ), . . .), where ~t1�i (γ) ∈ ~A1�i is
also in ~A1�i+1 by Lemma 4.3.6;

• ~box[x1← t1, . . .].t�i (γ)j = ~t�j (~t1�i (γ), . . .), again using Lemma 4.3.6;
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• ~t1 ~ t2�1 is defined uniquely; ~t1 ~ t2�i+1 (γ) , (~t1�i+1 (γ)i)◦~t2�i+1 (γ).

�

Lemma 4.3.8. Given typed terms in context x1 : A1, . . . ,xm : Am ` t : A and
Γ ` tk : Ak for 1 ≤ k ≤m,

�
t[~t/~x]

�
i
(γ) = ~t�i (~t1�i (γ), . . . ,~tm�i (γ)). ♦

Theorem 4.3.9 (Soundness). If t u then ~t� = ~u�. ♦

We now define a logical relation between our denotational semantics and
terms, from which both normalisation and adequacy will follow. Doing this
inductively proves rather delicate, because induction on size will not sup-
port reasoning about our values, as fold refers to a larger type in its premise.
This motivates a notion of unguarded size under which A[µα.A/α] is ‘smaller’
than µα.A. But under this metric IA is smaller than A, so next now poses a
problem. But the meaning of IA at index i + 1 is determined by A at index i,
and so, as in Birkedal et al [19], our relation will also induct on index. This
in turn creates problems with box, whose meaning refers to all indexes si-
multaneously, motivating a notion of box depth, allowing us finally to attain
well-defined induction.

Definition 4.3.10. The unguarded size us of an open type follows the obvious
definition for type size, except that us(IA) = 0.

The box depth bd of an open type is

• bd(A) = 0 for A ∈ {α,0,1,N};

• bd(A×B) = min(bd(A),bd(B)), and similarly for bd(A→ B);

• bd(µα.A) = bd(A), and similarly for bd(IA);

• bd(�A) = bd(A) + 1.

�

Lemma 4.3.11. (i) α guarded in A implies us(A[B/α]) ≤ us(A).

(ii) bd(B) ≤ bd(A) implies bd(A[B/α]) ≤ bd(A)
♦

Definition 4.3.12. The family of relations RAi , indexed by closed types A
and positive integers i, relates elements of the semantics a ∈ ~A�i and closed
typed terms t : A and is defined as

• ∗R1
i t iff t 〈〉;

• nRN
i t iff t succn zero;

• (a1, a2)RA1×A2
i t iff t 〈t1, t2〉 and adR

Ad
i td for d ∈ {1,2};
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• f RA→Bi t iff t λx.s and for all j ≤ i, aRAj u implies fj(a)R
B
j s[u/x];

• aR
µα.A
i t iff t foldu and hi(a)R

A[µα.A/α]
i u, where h is the “unfold” iso-

morphism for the recursive type (ref. Lemma 4.3.5);

• aRIAi t iff t nextu and, where i > 1, aRAi−1u.

• aR�Ai t iff t boxu and for all j, ajR
A
j u;

This is well-defined by induction on the lexicographic ordering on box depth,
then index, then unguarded size. First the� case strictly decreases box depth,
and no other case increases it (ref. Lemma 4.3.11.(ii) for µ-types). Second
the I case strictly decreases index, and no other case increases it (disregard-
ing �). Finally all other cases strictly decrease unguarded size, as seen via
Lemma 4.3.11.(i) for µ-types. �

Lemma 4.3.13 (Fundamental Lemma). Take Γ = (x1 : A1, . . . ,xm : Am), Γ ` t : A,
and ` tk : Ak for 1 ≤ k ≤m. Then for all i, if akR

Ak
i tk for all k, then

~Γ ` t : A�i (~a)R
A
i t[~t/~x].

♦

Theorem 4.3.14 (Adequacy and Normalisation).

(i) For all closed terms ` t : A it holds that ~t�i R
A
i t;

(ii) ~` t : N�i = n implies t succn zero;

(iii) All closed typed terms evaluate to a value.

♦

Proof. (i) specialises Lemma 4.3.13 to closed types. (ii), (iii) hold by (i) and
inspection of Definition 4.3.12. QED

Definition 4.3.15. Typed contexts with typed holes are defined as obvious.
Two terms Γ ` t : A,Γ ` u : A are contextually equivalent, written t 'ctx u, if for
all closing contexts C of type N, the terms C[t] and C[u] reduce to the same
value. �

Corollary 4.3.16. ~t� = ~u� implies t 'ctx u. ♦

Proof. ~C[t]� = ~C[u]� by compositionality of the denotational semantics .
Then by Theorem 2 they reduce to the same value. QED
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4.4 Logic for Guarded Lambda Calculus

This section presents our program logic Lgλ for the guarded λ-calculus. The
logic is an extension of the internal language of S [22, 30]. Thus it extends
multisorted intuitionistic higher-order logic with two propositional modal-
ities . and �, pronounced “later” and “always” respectively. The term lan-
guage of Lgλ includes the terms of gλ, and the types of Lgλ include types
definable in gλ. We write Ω for the type of propositions, and also for the
subobject classifier of S .

The rules for definitional equality extend the usual βη-laws for functions
and products with new equations for the new gλ constructs, listed in Fig-
ure 4.3.

Γ ` t : A [µα.A
/
α]

Γ ` unfold(fold t) = t

Γ ` t : µα.A

Γ ` fold(unfold t) = t

Γ ` t1 : A→ B Γ ` t2 : A

Γ ` next t1 ~ next t2 = next(t1t2)

Γ� ` t : A Γ ` ~t : Γ�

Γ ` prev[~x← ~t].(next t) = t
[
~t/~x

] Γ� ` t : IA Γ ` ~t : Γ�

Γ ` next
(
prev[~x← ~t].t

)
= t

[
~t/~x

]
Γ� ` t : A Γ ` ~t : Γ�

Γ ` unbox(box[~x← ~t].t) = t
[
~t/~x

] Γ� ` t : �A Γ ` ~t : Γ�

Γ ` box[~x← ~t].unbox t = t
[
~t/~x

]
Figure 4.3: Additional equations. The context Γ� is assumed constant.

Definition 4.4.1. A type X is total and inhabited if the formula Total (X) ≡
∀x : IX,∃x′ : X,next(x′) =IX x is valid. �

All of the gλ-types defined in Sec. 4.2 are total and inhabited (see Ap-
pendix 4.E for a proof using the semantics of the logic), but that is not the
case when we include sum types as the empty type is not inhabited.

Corresponding to the modalities I and � on types, we have modalities .
and � on formulas. The modality . is used to express that a formula holds
only “later”, that is, after a time step. It is given by a function symbol . :
Ω→Ω. The � modality is used to express that a formula holds for all time
steps. Unlike the .modality, � on formulas does not arise from a function on
Ω [26]. As with box, it is only well-behaved in constant contexts, so we will
only allow � in such contexts. The rules for . and � are listed in Figure 4.4.

The . modality can in fact be defined in terms of lift : IΩ → Ω (called
succ by Birkedal et al [22]) as . = lift◦next. The lift function will be useful
since it allows us to define predicates over guarded types, such as predicates
on Strg.
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Γ | Ξ, (.ϕ⇒ ϕ) ` ϕ
Löb

Γ ,x : X | ∃y : Y ,.ϕ(x,y) ` . (∃y : Y ,ϕ(x,y))
∃.

Γ ,x : X | .(∀y : Y ,ϕ(x,y)) ` ∀y : Y ,.ϕ(x,y)
∀.

Γ | Ξ,ϕ ` .ϕ

? ∈ {∧,∨,⇒}
Γ | .(ϕ ? ψ) a` .ϕ ? .ψ

Γ | ¬¬ϕ ` ψ
Γ | ϕ ` �ψ

Γ | ϕ ` �ψ
Γ | ¬¬ϕ ` ψ

Γ | ϕ ` ψ
Γ | �ϕ ` �ψ

Γ | �ϕ ` ϕ Γ | �ϕ ` ��ϕ ∀x,y : X. . (x =X y)⇔ nextx =IX nexty
eq

.
next

Figure 4.4: Rules for . and �. The judgement Γ | Ξ ` ϕ expresses that in
typing context Γ , hypotheses in Ξ prove ϕ. The converse entailment in ∀.
and ∃. rules holds if Y is total and inhabited. In all rules involving the � the
context Γ is assumed constant.

The semantics of the logic is given in S ; terms are interpreted as mor-
phisms of S and formulas are interpreted via the subobject classifier. We
do not present the semantics here; except for the new terms of gλ, whose
semantics are defined in Sec. 4.3, the semantics are as in [22, 26].

Later we will come to the problem of proving x =�A y from unboxx =A
unboxy, where x,y have type �A. This in general does not hold, but using the
semantics of Lgλ we can prove the proposition below.

Proposition 4.4.2. The formula �(unboxx =A unboxy)⇒ x =�A y is valid. ♦

There exists a fixed-point combinator of type (IA→ A)→ A for all types
A in the logic (not only those of in gλ) [22, Theorem 2.4]; we also write fix for
it.

Proposition 4.4.3. For any term f : IA→ A we have fixf =A f (next(fixf )) and,
if u is any other term such that f (nextu) =A u, then u =A fixf . ♦

In particular this can be used for recursive definitions of predicates. For
instance if P : N → Ω is a predicate on natural numbers we can define a
predicate PStrg on Strg expressing that P holds for all elements of the stream:

PStrg , fixλr.λxs.P (hdg xs)∧ lift (r ~ (tlg xs)) : Strg→Ω.

The logic may be used to prove contextual equivalence of programs:

Theorem 4.4.4. Let t1 and t2 be two gλ terms of type A in context Γ . If the
sequent Γ | ∅ ` t1 =A t2 is provable then t1 and t2 are contextually equivalent. ♦
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Proof. Recall that equality in the internal logic of a topos is just equality of
morphisms. Hence t1 and t2 denote same morphism from Γ to A. Adequacy
(Cor. 4.3.16) then implies that t1 and t2 are contextually equivalent. QED

Example 4.4.5. We list some properties provable using the logic. Except for
the first property all proof details are in Appendix 4.B.

(i) For any f : A→ B and g : B→ C we have

(mapg f ) ◦ (mapg g) =Strg→Strg mapg(f ◦ g).

Unfolding the definition of mapg from Ex. 4.2.10(vi) and using β-rules
and Proposition 4.4.3 we have mapg f xs = f (hdg xs) :: (next(mapg f ) ~
(tlg xs)). Equality of functions is extensional so we have to prove

Φ , ∀xs : Strg,mapg f (mapg g xs) =Strg mapg(f ◦ g)xs.

The proof is by Löb induction, so we assume .Φ and take xs : Strg.
Using the above property of mapg we unfold mapg f (mapg g xs) to

f (g (hdg xs)) :: (next(mapg f )~ ((next(mapg g))~ tlg xs))

and we unfold mapg(f ◦g)xs to f (g (hdg xs)) :: (next(mapg(f ◦ g))~ tlg xs).
Since Strg is a total type there is a xs′ : Strg such that nextxs′ = tlg xs.
Using this and the rule for ~ we have

next(mapg f )~ ((next(mapg g))~ tlg xs) =IStrg next(mapg f (mapg g xs′))

and next(mapg(f ◦g))~tlg xs =IStrg next(mapg(f ◦g)xs′). From the induc-
tion hypothesis .Φ we have .(mapg(f ◦ g)xs′ =Strg mapg f (mapg g xs′))
and so rule eq

.
next concludes the proof.

(ii) We can also reason about acausal functions. For any n : N, f : N→N,

every2nd(box ι. iterate (nextf )n) =Strg iterate (nextf 2)n,

where f 2 is λm.f (f m). The proof again uses Löb induction.

(iii) Since our logic is higher-order we can state and prove very general
properties, for instance the following general property of map

∀P ,Q : (N→Ω),∀f : N→N, (∀x : N, P (x)⇒Q(f (x)))

⇒∀xs : Strg, PStrg(xs)⇒QStrg(mapg f xs).

The proof illustrates the use of the property lift◦next = ..
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(iv) Given a closed term (we can generalise to terms in constant contexts) f
of type A→ B we have boxf of type �(A→ B). Define L(f ) = lim(boxf )
of type �A → �B. For any closed term f : A → B and x : �A we can
then prove unbox(L(f )x) =B f (unboxx). Then using Proposition 4.4.2
we can, for instance, prove L(f ◦ g) = L(f ) ◦L(g).

For functions of arity k we define Lk using L, and analogous properties
hold, e.g. we have unbox(L2(f )xy) = f (unboxx) (unboxy), which allows
us to transfer equalities proved for functions on guarded types to func-
tions on �’d types; see Sec. 4.5 for an example.

�

4.5 Behavioural Differential Equations in gλ

In this section we demonstrate the expressivity of our approach by showing
how to construct solutions to behavioural differential equations [83] in gλ,
and how to reason about such functions in Lgλ, rather than with bisimulation
as is more traditional. These ideas are best explained via a simple example.

Supposing addition + : N→N→N is given, then pointwise addition of
streams, plus, can be defined by the following behavioural differential equa-
tion

hd(plusσ1σ2) = hdσ1 + hdσ2 tl(plusσ1σ2) = plus(tlσ1) (tlσ2).

To define the solution to this behavioural differential equation in gλ, we first
translate it to a function on guarded streams plusg : Strg→ Strg→ Strg, as

plusg , fixλf .λs1.λs2.(hdg s1 + hdg s2) :: (f ~ (tlg s1)~ (tlg s2))

then define plus : Str→ Str→ Str by plus = L2(plusg). By Proposition 4.4.3 we
have

plusg = λs1.λs2.(hdg s1 + hdg s2) :: ((nextplusg)~ (tlg s1)~ (tlg s2)). (4.1)

This definition of plus satisfies the specification given by the behavioural dif-
ferential equation above. Let σ1,σ2 : Str and recall that hd = hdg ◦λs.unboxs.
Then use Ex. 4.4.5.(iv) and equality (4.1) to get hd(plusσ1σ2) = hdσ1 + hdσ2.

For tl we proceed similarly, also using that tlg(unboxσ ) = next(unbox(tlσ ))
which can be proved using the β-rule for box and the η-rule for next.

Since plusg is defined via guarded recursion we can reason about it with
Löb induction, for example to prove that it is commutative. Ex. 4.4.5.(iv) and
Proposition 4.4.2 then immediately give that plus on coinductive streams Str
is commutative.
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Once we have defined plusg we can use it when defining other functions
on streams, for instance stream multiplication ⊗ which is specified by equa-
tions

hd(σ1 ⊗ σ2) = (hdσ1) · (hdσ2) tl(σ1 ⊗ σ2) = (ρ(hdσ1)⊗ (tlσ2))⊕ ((tlσ1)⊗ σ2)

where ρ(n) is a stream with head n and tail a stream of zeros, and · is multi-
plication of natural numbers, and using ⊕ as infix notation for plus. We can
define ⊗g : Strg→ Strg→ Strg by ⊗g ,

fixλf .λs1.λs2. ((hdg s1) · (hdg s2)) ::

(nextplusg~(f ~ next ιg(hdg s1)~ tlg s2)~ (f ~ tlg s1 ~ nexts2))

then define ⊗ = L2 (⊗g). It can be shown that the function ⊗ so defined satis-
fies the two defining equations above. Note that the guarded plusg is used to
define ⊗g, so our approach is modular in the sense of [70].

The example above generalises, as we can show that any solution to a be-
havioural differential equation in Set can be obtained via guarded recursion
together with Lk . The formal statement is somewhat technical and can be
found in Appendix 4.D.

4.6 Discussion

Following Nakano [72], the I modality has been used as type-former for a
number of λ-calculi for guarded recursion. Nakano’s calculus and some suc-
cessors [2, 57, 88] permit only causal functions. The closest such work to
ours is that of Abel and Vezzosi [2], but due to a lack of destructor for I their
(strong) normalisation result relies on a somewhat artificial operational se-
mantics where the number of nexts that can be reduced under is bounded by
some fixed natural number.

Atkey and McBride’s extension of such calculi to acausal functions [11]
forms the basis of this paper. We build on their work by (aside from various
minor changes such as eliminating the need to work modulo first-class type
isomorphisms) introducing normalising operational semantics, an adequacy
proof with respect to the topos of trees, and a program logic.

An alterative approach to type-based productivity guarantees are sized
types, introduced by Hughes et al [50] and now extensively developed, for ex-
ample integrated into a variant of System Fω [1]. Our approach offers some
advantages, such as adequate denotational semantics, and a notion of pro-
gram proof without appeal to dependent types, but extensions with realistic
language features (e.g. following Møgelberg [71]) clearly need to be investi-
gated.
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4.A Proofs about the Denotational Semantics and
Normalisation

This section contains proofs of statements in Section 4.3.

of Lemma 4.3.6. By induction on type formation, with IA case omitted, �A a
base case, and µα.A considered only where α is not free in A. QED

of Lemma 4.3.8. By induction on the typing of t. We present the cases partic-
ular to our calculus.

next t: case i = 1 is trivial.
�

next t[~t/~x]
�
i+1

(γ) = r
~A�
i ◦

�
t[~t/~x]

�
i+1

(γ) =

r
~A�
i ◦ ~t�i+1 (~t1�i+1 (γ), . . .) by induction, which is ~next t�i+1 (~t1�i+1 (γ), . . .).�

(prev[~y← ~u].t)[~t/~x]
�
i
(γ) =

�
prev[~y← ~u[~t/~x]].t

�
i
(γ), which by definition

is

~t�i+1 (
�
u1[~t/~x]

�
i
(γ), . . .) = ~t�i+1 (~u1�i (~t1�i (γ), . . .), . . .)

by induction, which is
�

prev[~y← ~u].t
�
i (~t1�i (γ), . . .).

By definition
�

box[~y← ~u[~t/~x]].t
�
i
(γ)j = ~t�j (

�
u1[~t/~x]

�
i
(γ), . . .), which by

induction equals ~t�j (~u1�i (~t1�i (γ), . . .), . . .) =
�

box[~y← ~u].t
�
i (~t1�i (γ), . . .)j .�

unbox t[~t/~x]
�
i
(γ) =

�
t[~t/~x]

�
i
(γ)i = ~t�i (~t1�i (γ), . . .)i by induction, which

is ~unbox t�i (~t1�i (γ), . . .).
u1 ~ u2: case i = 1 is trivial.

�
(u1 ~u2)[~t/~x]

�
i+1

(γ) = (
�
u1[~t/~x]

�
i+1

(γ)i) ◦�
u2[~t/~x]

�
i+1

(γ) = (~u1�i+1 (~t1�i+1 (γ), . . .)i) ◦ ~u2�i+1 (~t1�i+1 (γ), . . .), which is
~u1 ~u2�i+1 (~t1�i+1 (γ), . . .). QED

of Soundness Theorem 4.3.9. We verify the reduction rules of Definition 4.2.2;
extending this to any evaluation context, and to , is easy. The product re-
duction case is standard, and function case requires Lemma 4.3.8. unfold fold
is the application of mutually inverse arrows.�

prev[~x← ~t].t
�
i

= ~t�i+1 (~t1�i , . . .). Each tk is closed, so is denoted by an
arrow from 1 to the constant S-object ~Ak�, so by naturality ~tk�i = ~tk�i+1.
But ~t�i+1 (~t1�i+1 , . . .) =

�
t[~t/~x]

�
i+1

by Lemma 4.3.8, which is
�

prev t[~t/~x]
�
i
.

~prev next t�i = ~next t�i+1 = ~t�i .�
unbox(box[~x← ~t].t)

�
i

= (
�

box[~x← ~t].t
�
i
)i = ~t�i (~t1�i , . . .) =

�
t[~t/~x]

�
i
.

With ~-reduction, index 1 is trivial. ~next t1 ~ next t2�i+1 = (~next t1�i+1)i ◦
~next t2�i+1 = (r~A→B�i ◦ ~t1�i+1)i ◦ r

~A�
i ◦ ~t2�i+1 = (~t1�i ◦ r1

i )i ◦ ~t2�i ◦ r1
i by

naturality, which is (~t1�i)i ◦ ~t2�i = ~t1t2�i = ~t1t2�i ◦ r1
i = r

~B�
i ◦ ~t1t2�i+1 =

~next(t1t2)�i+1. QED

of Lemma 4.3.11. By induction on the construction of the type A.
(i) follows with only interesting case the variable case – A cannot be α

because of the requirement that α be guarded in A.
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(ii) follows with interesting cases: variable case enforces bd(B) = 0; binary
type-formers ×,→ have for example bd(Ad) ≥ bd(A1 ×A2), so bd(Ad) ≥ bd(B)
and the induction follows; �A by construction has no free variables. QED

Lemma 4.A.1. If t u and aRAi u then aRAi t. ♦

Proof. All cases follow similarly; consider A1 × A2. (a1, a2)RA1×A2
i u implies

u  〈t1, t2〉, where this value obeys some property. But then t  〈t1, t2〉
similarly. QED

Lemma 4.A.2. aRAi+1t implies r~A�i (a)RAi t. ♦

Proof. Cases 1,N are trivial. Case × follows by induction because restrictions
are defined pointwise. Case µ follows by induction and the naturality of the

isomorphism h. Case �A follows because r~�A�i (a) = a.
For A→ B take j ≤ i and a′RAj u. By the downwards closure in the defini-

tion of RA→Bi+1 we have fj(a′)R
B
j s[u/x]. But fj = (r~A→B�i (f ))j .

With IA, case i = 1 is trivial, so take i = j + 1. aRIAj+2t means t nextu

and aRAj+1u, so by induction r~A�j (a)RAj u, so r~IA�j+1 (a)RAj u as required. QED

Lemma 4.A.3. If aRAi t and A is constant, then aRAj t for all j. ♦

Proof. Easy induction on types, ignoring IA and treating �A as a base case.
QED

We finally turn to the proof of the Fundamental Lemma.

of Lemma 4.3.13. By induction on the typing Γ ` t : A. 〈〉,zero cases are trivial,
and 〈u1,u2〉, fold t cases follow by easy induction.

succ: If t[~t/~x] reduces to succl zero for some l then succ t[~t/~x] reduces to
succl+1 zero, as we may reduce under the succ.

πdt: If ~t�i (~a)R
A1×A2
i t[~t/~x] then t[~t/~x] 〈u1,u2〉 and ud is related to the

d’th projection of ~t�i (~a). But then πdt[~t/~x] πd〈u1,u2〉 7→ ud . Lemma 4.A.1
completes the case.

λx.t: Taking j ≤ i and aRAj u, we must show that

~λx.t�i (~a)j(a)R
B
j t[~t/~x][u/x].

The left hand side is ~t�j (~a�j , a). For each k, ak�jR
Ak
j tk by Lemma 4.A.2, and

induction completes the case.
u1u2: By induction u1[~t/~x] λx.s and ~u1�k (~a)k(~u2�k (~a))RBi s[u2[~t/~x]/x].

Now (u1u2) (λx.s)(u2[~t/~x]) 7→ s[u2[~t/~x]/x], and Lemma 4.A.1 completes.
unfold t: we reduce under unfold, then reduce unfold fold, and then use

Lemma 4.A.1.
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next t: Trivial for index 1. For i = j + 1, if for each k, akR
Ak
j+1tk then by

Lemma 4.A.2 r~Ak�j (ak)R
Ak
j tk . Then by induction ~t�j ◦ r

~A1�×···~Am�
j (~a)RAj t[~t/~x],

whose left side is by naturality r~A�j ◦ ~t�j+1 (~a) = ~next t�j+1 (~a).

prev[~y ← ~u].t: ~uk�i (~a)R
Ak
i uk[~t/~x] by induction, so ~uk�i (~a)R

Ak
i+1uk[~t/~x] by

Lemma 4.A.3. Then ~t�i+1 (~u1�i (~a), . . .)R
IA
i+1t[u1[~t/~x]/y1, . . .] by induction, so

we have t[u1[~t/~x]/y1, . . .] nexts with ~t�i+1 (~u1�k (~a), . . .)RAi s. The left hand
side is

�
prev[~y← ~u].t

�
i (~a), while prev[~y ← ~u[~t/~x]].t 7→ prev t[u1[~t/~x]/y1, . . .] 

prev nexts 7→ s, so Lemma 4.A.1 completes.
box[~y ← ~u].t: To show

�
box[~y← ~u].t

�
i (~a)R

�A
i box[~y ← ~u].t)[~t/~x], we ob-

serve that the right hand side reduces in one step to box t[u1[~t/~x]/y1, . . .]. The
j’th element of the left hand side is ~t�j (~u1�k (~a), . . .). We need to show this is

related by RAj to t[u1[~t/~x]/y1, . . .]; this follows by Lemma 4.A.3 and induction.

unbox t: By induction t[~t/~x] boxu, so unbox t[~t/~x] unboxboxu 7→ u.
By induction ~t�i (~a)iR

A
i u, so ~unbox t�i (~a)R

A
i u, and Lemma 4.A.1 completes.

u1 ~ u2: Index 1 is trivial so set i = j + 1. ~u2�j+1 (~a)RIAj+1u2[~t/~x] im-

plies u2[~t/~x] nexts2 with ~u2�j+1 (~a)RAj s2. Similarly u1 nexts1 and s1 

λx.s with (~u1�j+1 (~a)j ) ◦ ~u2�j+1 (~a)RBj s[s2/x]. The left hand side is exactly
~u1 ~u2�j+1 (~a). Now u1 ~ u2 nexts1 ~ u2 nexts1 ~ nexts2 7→ next(s1s2),
and s1s2 (λx.s)s2 7→ s[s2/x], completing the proof. QED

4.B Example Proofs in Lgλ

We first record a substitution property of box and prev for later use.

Lemma 4.B.1. Let A1, . . . ,Ak and B be constant types and C any type. If we have
x : B ` t : C and y1 : Ak , . . . , yk : Ak ` t′ : B then

box [x← t′].t =�C box ι.t[t′/x].

If C = ID then we also have

prev [x← t′].t =D prev ι.t[t′/x]

♦

We can prove the first part of the lemma in the logic, using Proposi-
tion 4.4.2 and the β-rule for box. We can also prove the second part of the
lemma for total and inhabited types D with the rules we have stated so far
using the β-rule for next. For arbitrary D we can prove the lemma using the
semantics.
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Acausal Example

To see that Löb induction can be used to prove properties of recursively de-
fined acausal functions we show that for any n : N and any f : N → N we
have

every2nd (box ι. iterate (nextf )n) =Strg iterate (nextf 2)n,

where we write f 2 for λn.f (f n). We first derive the intermediate result

∀m : N, tl (box ι. iterate (nextf )m) =Str box ι. iterate (nextf ) (f m), (4.2)

by unfolding and applying Proposition 4.4.3:

tl (box ι. iterate (nextf )m) = box [s← box ι. iterate (nextf )m].prev ι. tlg(unboxs)

= box ι.prev ι. tlg(iterate (nextf )m)
(by Lemma 4.B.1)

= box ι.prev ι.next (iterate (nextf ) (f m))

= box ι. iterate (nextf ) (f m).

Now assume

.
(
∀n : N,every2nd(box ι. iterate (nextf )n) =Strg iterate (nextf 2)n

)
, (4.3)

then by Löb induction we can derive

every2nd (box ι. iterate (nextf )n)

= n :: next (every2nd (tl (tl (box ι. iterate (nextf )n))))

= n :: next (every2nd (box ι. iterate (nextf ) (f (f n)))) (by 4.2)

= n :: next (iterate (nextf 2) (f (f n))) (by 4.3 and eq
.
next)

= iterate (nextf 2)n.

Higher-Order Logic Example

We now prove

∀P ,Q : (N→Ω),∀f : N→N, (∀x : N, P (x)⇒Q(f (x)))

⇒∀xs : Str, PStrg(xs)⇒QStrg(mapg f xs).

This is a simple property of mapg, but the proof shows how the pieces fit to-
gether. Recall that mapg satisfies mapg f xs = f (hdg xs)::(next(mapg f )~(tlg xs)).
We prove the property by Löb induction. So let P and Q be predicates on N

and f a function on N that satisfies ∀x : N, P (x)⇒ Q(f (x)). To use Löb in-
duction assume

.(∀xs : Str, PStrg(xs)⇒QStrg(mapg f xs)) (4.4)
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and let xs be a stream satisfying PStrg . Unfolding PStrg(xs) we get P (hdg xs)
and lift(nextPStrg ~ (tlg xs)) and we need to prove Q(hdg(mapg f xs)) and also
lift(nextQStrg ~ (tlg(mapg f xs))). The first is easy since Q(hdg(mapg f xs)) =
Q(f (hdg xs)). For the second we have tlg(mapg f xs) = next(mapg f ) ~ (tlg xs).
Since Str is a total and inhabited type there is a stream xs′ such that nextxs′ =
tlg xs. This gives tlg(mapg f xs) = next(mapg f xs′) and so our desired result
reduces to lift(next(QStrg(mapg f xs′))) and lift(nextPStrg ~ (tlg xs)) is equivalent
to lift(next(PStrg(xs′))). Now lift◦next = . and so what we have to prove is
.(QStrg(mapg f xs′)) from .(PStrg(xs′)), which follows directly from the induc-
tion hypothesis (4.4).

4.C Sums

This appendix extends Secs. 4.2, 4.3 and 4.4 to add sum types to the gλ-
calculus. and to logic Lgλ.

Binary sums in Atkey and McBride [11] come with the type isomorphism
�A+�B � �(A+B), but there are not in general terms witnessing this isomor-
phism. Likewise if binary sums are added to our calculus as obvious we may
define the term

λx.box ι.casexof x1. in1 unboxx1;x2. in2 unboxx2 : �A+�B→ �(A+B)

but no inverse is definable in general. We believe such a map may be useful
when working with guarded recursive types involving sum, such as the type
of potentially infinite lists, and in any case the isomorphism is valid in the
topos of trees and so it is harmless for us to reflect this in our calculus. We
do this via a new term-former box+ allowing us to define

λx.box+ ι.unboxx : �(A+B)→ �A+�B

This construct may be omitted without effecting the results of this section.

Definition 4.C.1 (ref. Defs. 4.2.1,4.2.2,4.2.3,4.2.4,4.2.7,4.2.8). gλ-terms are
given by the grammar

t ::= · · · | abort t | ind t | case t of x1.t;x2.t | box+σ.t

where d ∈ {1,2}, and x1,x2 are variables. We abbreviate terms with box+ as
for prev and box.

The reduction rules on closed gλ-terms with sums are

case ind t of x1.t1;x2.t2 7→ td[t/xd] (d ∈ {1,2})
box+[~x← ~t].t 7→ box+ t[~t/~x] (~x non-empty)

box+ ini t 7→ ini box t

Values are terms of the form

· · · | in1 t | in2 t
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∇ ` 0

∇ ` A1 ∇ ` A2

∇ ` A1 +A2

Figure 4.5: Type formation for sums in the gλ-calculus

Γ ` t : 0

Γ ` abort t : A

Γ ` t : Ad
Γ ` ind t : A1 +A2

Γ ` t : A1 +A2 Γ ,x1 : A1 ` t1 : A Γ ,x2 : A2 ` t2 : A

Γ ` case t of x1.t1;x2.t2 : A

x1 : A1, . . . ,xn : An ` t : B1 +B2
Γ ` t1 : A1 · · · Γ ` tn : An

Γ ` box+[x1← t1, . . . ,xn← tn].t : �B1 +�B2
A1, . . . ,An constant

Figure 4.6: Typing rules for sums in the gλ-calculus

Evaluation contexts are defined by the grammar

E ::= · · · | abortE | caseE of x1.t1;x2.t2 | box+E

gλ-types for sums are defined inductively by the rules of Figure 4.5, and
the new typing judgments are given in Figure 4.6, where d ∈ {1,2}. �

We now consider denotational semantics. Note that the initial object of S
is ∆∅ (ref. Definition 4.3.2), while binary coproducts in S are defined point-
wise. By naturality it holds that for any arrow f : X→ Y +Z and x ∈ X, fi(x)
must be an element of the same side of the sum for all i.

Definition 4.C.2 (ref. Defs. 4.3.3,4.3.7). • ~0� is the constant functor ∆∅;

• ~A1 +A2� ( ~W ) = ~A1� ( ~W ) + ~A2� ( ~W ) and likewise for S-arrows.
Term-formers for sums are intepreted via S-coproducts, with abort, ind

and case defined as usual, and box+ defined as follows.

• Let ~t�j (~t1�i (γ), . . . ,~tn�i (γ)) (which is well-defined by Lemma 4.3.6)
be [aj ,d] as j ranges, recalling that d ∈ {1,2} is the same for all i. Define

a : 1→ ~Ad� to have j’th element aj . Then
�

box+[~x← ~t].t
�
i
(γ) , [a,d].

�

We now proceed to the sum cases of our proofs.
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box+[~y← ~u].t case of Lemma 4.3.8. By induction we have�
uk[~t/~x]

�
i
(γ) = ~uk�i (~t1�i (γ), . . .).

Hence

~t�j (
�
u1[~t/~x]

�
i
(γ), . . .) = ~t�j (~u1�i (~t1�i (γ), . . .), . . .)

as required. QED

box+ cases of Soundness Theorem 4.3.9. Because each ~Ak� is a constant object
by Lemma 4.3.6, ~tk�i = ~tk�j for all i, j. Hence

�
box+[~x← ~t].t

�
i

is defined

via components ~t�j (~t1�j , . . .) and
�

box+ t[~t/~x]
�

is defined via components�
t[~t/~x]

�
j
. These are equal by Lem 4.3.8.

~box+ ind t�i is the d’th injection into the function with j’th component
~t�j , and likewise for ~ind box t�i . QED

Definition 4.C.3 (ref. Definition 4.3.12). • [a,d]RA1+A2
i t iff t  ind u for

d = 1 or 2, and aRAdi u.
Note that R0

i is (necessarily) everywhere empty. �

for Lemmas 4.A.1 and 4.A.2. For 0 cases the premise fails so the the lemmas
are vacuous. + cases follow as for ×. QED

ref. Fundamental Lemma 4.3.13. abort: The induction hypothesis states that
~t�k (~a)R0

kt[~t/~x ], but this is not possible, so the theorem holds vacuously.
ind t case follows by easy induction.
case t of y1.u1;y2.u2: If ~t�i (~a)R

A1+A2
i t[~t/~x] then t[~t/~x ]  ind u for some

d ∈ {1,2}, with ~t�i (~a) = [a,d] and aRAdi u. Then ~ud�i (~a,a)R
A
k ud[~t/~x,u/yd].

Now (case t of y1.u1;y2.u2)[~t/~x]  case ind u of y1.(u1[~t/~x]);y2.(u2[~t/~x]), which
reduces to ud[~t/~x,u/yi], and Lemma 4.A.1 completes.

box+[~y ← ~u].t: ~uk�i (~a)R
Ak
i uk[~t/~x] by induction, so ~uk�i (~a)R

Ak
j uk[~t/~x] for

any j by Lemma 4.A.3. By induction ~t�j (~u1�k (~a), . . .)RB1+B2
j t[u1[~t/~x ]/y1, . . .].

If ~t�j (~u1�k (~a), . . .) is some [bj ,d] we have t[u1[~t/~x]/y1, . . .] ind s for some s

satisfying bjR
Bd
j s. Now

(box+[~y← ~u].t)[~t/~x ] 7→ box+ t[u1[~t/~x ]/y1, . . .] box+ ind s,

which finally reduces to ind boxs, which yields the result. QED

The logic Lgλ may be extended to sums via the usual βη-laws and com-
muting conversions for binary sums and the equational version of the box+

rule (ref. Figure 4.3):

Γ� ` t : Bd Γ ` ~t : Γ�
Γ ` box+[~x← ~t].(ind t) = ind(box[~x← ~t].t)
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4.D Proof of Definability of Solutions of Behavioural
Differential Equations in gλ

An equivalent presentation of the topos of trees is as sheaves over ω (with
Alexandrov topology) Sh (ω). In this section it is more convenient to work
with sheaves than with presheaves because the global sections functor Γ 1 in
the sequence of adjoints

Π1 a ∆ a Γ

where

Π1 : S → Set

Π1(X) = X(1)

∆ : Set→S

∆(a)(α) =

1 if α = 0

a otherwise

Γ : S → Set

Γ (X) = X(ω)

is just evaluation at ω, i.e. the limit is already present. This simplifies nota-
tion. Another advantage is that I : S → S is given as

(IX)(ν + 1) = X(ν)

(IX)(α) = X(α)

where α is a limit ordinal (either 0 or ω) which means that IX(ω) = X(ω)
and as a consequence, nextω = idX(ω) and Γ (IX) = Γ (X) for any X ∈ S and so
�(IX) = �X for anyX so we don’t have to deal with mediating isomorphisms.

First we have a simple statement, but useful later, since it gives us a pre-
cise goal to prove later when considering the interpretation.

Lemma 4.D.1. Let X,Y be objects of S . Let F : I
(
Y X

)
→ Y X be a morphism in

S and F a function in Set from Y (ω)X(ω) to Y (ω)X(ω). Suppose that the diagram

Γ
(
I
(
Y X

))
Γ (Y X)

Y (ω)X(ω) Y (ω)X(ω)

Γ (F)

lim lim

F

where lim
(
{gν}ων=0

)
= gω commutes. By Banach’s fixed point theorem F has a

unique fixed point, say u : 1→ Y X .
Then lim(Γ (u)(∗)) = lim(Γ (next ◦ u)(∗)) = Γ (next ◦ u)(∗)ω = uω(∗)ω is a fixed

point of F. ♦

1This standard notation for this functor should not to be confused with our notation for
typing contexts.



4.D. Proof of Definability of Solutions of Behavioural Differential Equations in gλ 173

Proof. The proof is trivial.

F (lim(Γ (u)(∗))) = lim(Γ (F)(Γ (next ◦u)(∗)))
= lim(Γ (F ◦next ◦u)(∗)) = lim(Γ (u)(∗)).

QED

Note that lim is not an isomorphism. There are (in general) many more
functions from X(ω) to Y (ω) than those that arise from natural transforma-
tions. The ones that arise from natural transformations are the non-expansive
ones.

Behavioural Differential Equations

Let ΣA be a signature of function symbols with two types, A and Str. Suppose
we wish to define a new k-ary operation given the signature ΣA. We need to
provide two terms hf and tf (standing for head and tail). hf has to be a term
using function symbols in signature ΣA and have type

x1 : A,x2 : A, · · · ,xk : A ` hf : A

and tf has to be a term in the signature extended with a new function symbol

f of type (Str)k→ Str and have type

x1 : A, · · · ,xk : A,y1 : Str, · · · , yk : Str, z1 : Str, · · · , zk : Str ` tf : Str

In the second term the variables x (intuitively) denote the head elements of
the streams, the variables y denote the streams, and the variables z denote
the tails of the streams.

We now define two interpretations of hf and tf . First in the topos of trees
and then in Set.

We choose a set a ∈ Set and define ~A�S = ∆(a) and ~Str�S = µX.∆(a) ×
I(X). To each function symbol g ∈ Σ of type τ1, . . . , τn → τn+1 we assign a
morphism

~g�S : ~τ1�S × ~τ2�S × · · · × ~τn�S → ~τn+1�S .

Then we define the interpretation of hf by induction as a morphism of type

~A�kS → ~A�S by

~xi�S = πi
~g(t1, t2, . . . , tn)�S = ~g�S ◦

〈
~t1�S ,~t2�S , · · · ,~tn�S

〉
.

For tf we interpret the types and function symbols in ΣA in the same way.
But recall that tf also contains a function symbol f . So the denotation of tf
will be a morphism with the following type�

tf
�
S

: I
(
~Str�

~Str�kS
S

)
× ~A�kS × ~Str�kS × (I (~Str�S ))k→ I(~Str�S )
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and is defined as follows

~xi�S = next ◦ ι ◦πxi
~yi�S = next ◦πyi
~zi�S = πzi

~g(t1, t2, . . . , tn)�S = I(~g�S ) ◦ can ◦
〈
~t1�S ,~t2�S , · · · ,~tn�S

〉
if g , f

~f (t1, t2, . . . , tk)�S = eval ◦
〈
J ◦πf ,can ◦

〈
~t1�S ,~t2�S , · · · ,~tk�S

〉〉
where can is the canonical isomorphism witnessing that I preserves prod-
ucts, eval is the evaluation map and ι is the suitably encoded morphism that
when given a constructs the stream with head a and tail all zeros. This exists
and is easy to construct.

Next we define the denotation of hf and tf in Set. We set ~A�Set = a
and ~Str�Set = ~Str�S (ω). For each function symbol in ΣA we define ~g�Set =
Γ ~g�S =

(
~g�S

)
ω

.

We then define
�
hf

�
Set

as a function

~A�kSet→ ~A�Set

exactly the same as we defined
�
hf

�
S

.

~xi�Set = πi
~g(t1, t2, . . . , tn)�Set = ~g�Set ◦

〈
~t1�Set ,~t2�Set , · · · ,~tn�Set

〉
.

The denotation of tf is somewhat different in the way that we do not
guard the tail and the function being defined with a I. We define�

tf
�

Set
: ~Str�

~Str�kSet
Set × ~A�kSet × ~Str�kSet × (~Str�Set)

k→ ~Str�Set

as follows

~xi�Set = ι ◦πxi
~yi�Set = πyi
~zi�Set = πzi

~g(t1, t2, . . . , tn)�Set = ~g�Set ◦
〈
~t1�Set ,~t2�Set , · · · ,~tn�Set

〉
if g , f

~f (t1, t2, . . . , tk)�Set = eval ◦
〈
πf ,

〈
~t1�Set ,~t2�Set , · · · ,~tk�Set

〉〉
where ι is again the same operation, this time on actual streams in Set.

We then define
F : ~Str�

~Str�kSet
Set → ~Str�

~Str�kSet
Set

as

F(ϕ) (~σ ) = Γ (fold)
((�
hf

�
Set

(hd(~σ )) ,
�
tf

�
Set

(ϕ,hd(~σ ), ~σ ,tl(~σ ))
))
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where hd and tl are head and tail functions (extended in the obvious way to
tuples). Here fold is the isomorphism witnessing that guarded streams are
indeed the fixed point of the defining functor.

Similarly we define

F : I
(
~Str�

~Str�kS
S

)
→ ~Str�

~Str�kS
S

as the exponential transpose Λ of

F′ = fold ◦
〈�
hf

�
◦ ~hd ◦π2,

�
tf

�
S
◦

id
I

(
~Str�

~Str�kS
S

) × 〈 ~hd, id~Str�kS ,
~tail

〉
〉

Proposition 4.D.2. For the above defined F and F we have

lim◦Γ (F) = F ◦ lim

♦

Proof. Let ϕ ∈ Γ
(
I
(
~Str�

~Str�kS
S

))
= Γ

(
~Str�

~Str�kS
S

)
. We have

lim(Γ (F)(ϕ)) = lim (Fω(ϕ)) = Fω(ϕ)ω

and

F(lim(ϕ)) = F (ϕω)

Now both of these are elements of ~Str�
~Str�kSet
Set , meaning genuine functions in

Set, so to show they are equal we use elements. Let ~σ ∈ ~Str�kSet.
We are then required to show

F (ϕω) (~σ ) = Fω(ϕ)ω(~σ )

Recall that F = Λ(F′) (exponential transpose) so Fω(ϕ)ω(~σ ) = F′ω(ϕ, ~σ ). Now
recall that composition in S is just composition of functions at each stage and
products in S are defined pointwise and that nextω is the identity function.

Moreover, the morphism hd gets mapped by Γ to hd in Set and the same
holds for tl. For the latter it is important that Γ (I(X)) = Γ (X) for any X.

We thus get

F′ω(ϕ, ~σ ) = foldω
(
(
�
hf

�
S

)ω (hd(~σ )) ,
(�
tf

�
S

)
ω

(ϕ,hd(~σ ), ~σ ,tl(~σ ))
)

And for F (ϕω) (~σ ) we have

F (ϕω) (~σ ) = foldω
(�
hf

�
Set

(hd (~σ )) ,
(�
tf

�
Set

)
(ϕω,hd(~σ ), ~σ ,tl(~σ ))

)
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It is now easy to see that these two are equal. The proof is by induction on
the structure of hf and tf . The variable cases are trivial, but crucially use the
fact that nextω is the identity. The cases for function symbols inΣA are trivial
since their denotations in Set are defined to be the correct ones. The case for
f goes through similarly since application at ω only uses ϕ at ω. QED

Theorem 4.D.3. Let (Σ1,Σ2) be a signature and I its interpretation. Let (hf , tf )
be a behavioural differential equation defining a k-ary function f using function
symbols in Σ. The right-hand sides of hf and tf define a term Φ

g
f of type

Φ
g
f : I(Strg→ Strg→ ·· ·Strg︸                     ︷︷                     ︸

k+1

)→ (Strg→ Strg→ ·· ·Strg︸                     ︷︷                     ︸
k+1

).

and a term Φf of type

Φf : (Str→ Str→ ·· ·Str︸                 ︷︷                 ︸
k+1

)→ (Str→ Str→ ·· ·Str︸                 ︷︷                 ︸
k+1

).

by using Lagj
(
I (gj )

)
for interpretations of function symbols gj .

Let f g = fixΦ
g
f be the fixed point of Φg

f . Then f = Lk(boxf g) is a fixed point
of Φf which in turn implies that it satisfies equations hf and tf . ♦

Proof. Use Proposition 4.D.2 together with Lemma 4.D.1 together with the
observation that Set is a full subcategory of S with ∆ being the inclusion.

We also use the fact that for a closed term u : A→ B (which is interpreted
as a morphism from 1 to BA) the denotation of L(u) at stage ν and argument
∗ is lim(Γ (u)(∗)). QED

Discussion

What we have shown is that for each behavioural differential equation that
defines a function on streams and can be specified as a standalone function de-
pending only on previously defined functions, i.e. it is not defined mutually
with some other function, there is a fixed point. It is straightforward to ex-
tend to mutually recursive definitions by defining a product of functions in
the same way as we did for a single function, but notationally this gets quite
heavy.

More importantly, suppose we start by defining an operation f on streams
first, and the only function symbols in ΣA operate on A, i.e. all have type
Ak → A for some k. Assume that these function symbols are given denota-
tions in S as ∆(g) for some function g in Set. Then the denotation in Set is
just g.

The fixed point f in S is then a morphism from 1 to the suitable expo-
nential. Let f be the uncurrying of f . Then lim(Γ (f )(∗)) = Γ (f ).
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Thus if we continue defining new functions which use f , we then choose
f as the denotation of the function symbol f . The property lim(Γ (u)(∗)) = Γ (f )
then says that the f that is used in the definition is the f that was defined
previously.

4.E About Total and Inhabited Types

An object in S is total and inhabited if all components are non-empty and all
restriction functions are surjective. We have the following easy proposition.

Proposition 4.E.1. Let P : S → S be a functor such that if X is a total and
inhabited object, so is P (X), i.e. P restricts to the full subcategory of total and
inhabited objects.

If P is locally contractive then its fixed point is total and inhabited. ♦

Proof. We use the equivalence between the full subcategory tiS of S of total
and inhabited objects and the category of complete bisected non-empty ultra-
metric spaces M. We know that the category M is an M-category [20] and
thus so is tiS . It is easy to see that locally contractive functors in S are lo-
cally contractive in the M-category sense. Hence if P is locally contractive
and restricts to tiS its fixed point is in tiS . QED

Corollary 4.E.2. Let P be a non-zero polynomial functor whose coefficients and
exponents are total and inhabited. The functor P ◦I is locally contractive and its
unique fixed point is total and inhabited. ♦

Proof. Products and non-empty coproducts of total and inhabited objects are
total and inhabited. Similarly, if X and Y are total and inhabited, so is XY .
So any non-zero polynomial functor P whose coefficients are all total and
inhabited restricts to tiS . The functor I restricts to tiS as well (but note that
it does not restrict to the subcategory of total objects tS). Polynomial functors
on S are also strong and so the functor P ◦I is locally contractive. Hence by
Proposition 4.E.1 its unique fixed point is a total and inhabited object. QED

In particular guarded streams of any total and inhabited type themselves
form a total and inhabited type.





Chapter 5

A Model of Guarded Recursion
with Clock Synchronisation

This chapter is a revised and extended version of

Ale Bizjak and Rasmus Ejlers Mgelberg.

A model of guarded recursion with clock synchronisation.

Electronic Notes in Theoretical Computer Science, 319:83 – 101, 2015.

The 31st Conference on the Mathematical Foundations of Pro-
gramming Semantics (MFPS XXXI).

The section describing the syntax and the typing rules of the calculus
was removed since it is superseded by Chapter 7 of this thesis. Instead the
sections describing the model are now extended to include more proofs and
explanations.

Abstract

Guarded recursion is an approach to solving recursive type equations
where the type variable appears guarded by a modality to be thought of
as a delay for one time step. Atkey and McBride proposed a calculus in
which guarded recursion can be used when programming with coinduc-
tive data, allowing productivity to be captured in types. The calculus
uses clocks representing time streams and clock quantifiers which allow
limited and controlled elimination of modalities. The calculus has since
been extended to dependent types by Møgelberg.

In previous versions of this calculus, different clocks represented sepa-
rate time streams and clock synchronisation was prohibited. In this paper
we show that allowing clock synchronisation is safe by constructing a
new model of guarded recursion and clocks. This result will simplify
the type theory by removing freshness restrictions from typing rules.

179
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5.1 Introduction

Guarded recursion [72] is an approach to solving recursive type equations
where the type variable appears guarded by a I (pronounced “later”) modal
type operator. In particular the type variable could appear positively or neg-
atively or both, e.g. the equation σ = 1+I(σ → σ ) has a unique solution [22].
On the term level the guarded fixed point combinator fixτ : (Iτ→ τ)→ τ satis-
fies the equation f (next (fixτf )) = fixτf for any f : Iτ→ τ . Here next : τ→ Iτ
is an operation that “freezes” an element that we have available now so that
it is only available in the next time step.

One situation where guarded recursive types are useful is when faced
with an unsolvable type equation. These arise for example when modelling
programming languages with sophisticated features. In this case a solution to
a guarded version of the equation often turns out to suffice, as shown in [22].

But guarded recursive versions of polymorphic type equations are also
useful in type theory, even in settings where inductive and coinductive solu-
tions to these equations are assumed to exist. To see this, consider the coin-
ductive type of streams Str, i.e., the final coalgebra for the functor S(X) =
N × X. Proof assistants like Coq [68] and Agda [73] allow programmers
to construct streams using recursive definitions, but to ensure consistency,
these must be productive, i.e., one must be able to compute the first n ele-
ments of a stream in finite time. Coq and Agda inspect recursive definitions
for productivity by a syntactic property that is often overly conservative and
does not interact well with higher-order functions.

Using the type of guarded streams Strg, i.e., the unique type satisfying the
equation Strg = N × IStrg, one can encode productivity in types: a pro-
ductive recursive stream definition is exactly a term of type IStrg → Strg.
To combine the benefits of coinductive and guarded recursive types, Atkey
and McBride [11] suggested a simply typed calculus with clock variables κ
representing time streams, each with associated Iκ type constructors, and
universal quantification over clocks ∀κ. If we think of the type τ as being
time-indexed along κ, then the type ∀κ.τ contains only elements which are
available for all time steps. The relationship between the two notions of
streams can then be captured by the encoding of the coinductive stream type
as Str = ∀κ.Strgκ. This encoding works for a general class of coinductive
types including those given by polynomial functors, and these results were
since extended to the dependently typed setting by Møgelberg [71]. In both
cases the encodings were proved sound with respect to a denotational model.

Clock synchronisation In the calculus for guarded recursion with clocks,
typing judgements are given in a context of clocks ∆, which is just a finite set
of names for clocks, as well as a context of term variables Γ . Clock variables
κ are simply names, there are no constants or operations on them, and there
is no type of clocks. The introduction and elimination rules for ∀κ as defined
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by Atkey and McBride [11] are

Γ `∆,κ t : τ

Γ `∆ Λκ.t : ∀κ.τ
Γ `∆,κ′ t : ∀κ.τ κ′ < ∀κ.τ

Γ `∆,κ′ t[κ′] : τ[κ′/κ] (5.1)

These rules are very similar to those for polymorphic types in System F [46],
except for the freshness side condition on the elimination rule ensuring that
the clocks κ and κ′ are not synchronised in τ . The side condition makes the
rule syntactically not well-behaved. For instance it is not clear that the β-rule
for clock application preserves types.

This becomes a more serious problem in dependent type theory. The rule
Møgelberg [71] considers for clock instantiation is

κ < fc(Γ ) Γ `∆,κ τ type Γ ,Γ ′ `∆,κ′ t : ∀κ.τ
Γ ,Γ ′ `∆,κ′ t[κ′] : τ[κ′/κ]

where the side condition requires that none of the types τ depends on contain
the clock κ. The reason for the additional clock context Γ ′ is to ensure that
the calculus is closed under weakening. However, closure under substitution
was overlooked and the rules do not appear to be sufficient to derive the
substitution property such as

Γ ,x : τ `∆ t : σ Γ `∆ s : τ

Γ `∆ t[s/x] : σ [s/x]

which is necessary for a well-behaved dependent type theory.
The restriction on clock instantiation comes from the denotational mod-

els of guarded recursion. The original work on guarded recursion [18, 22]
models a type as a presheaf over the ordered natural numbers, i.e., a dia-
gram of the form

X(1) X(2) X(3) · · ·

For example, the guarded recursive type of streams satisfying Strg = N ×
IStrg is modelled by the presheaf with X(n) = N

n. In this model I shifts a
type one step to the right inserting a singleton set in the end of the sequence.

This model was generalised by Møgelberg [71] (Atkey and McBride [11]
use essentially the same idea) to multiple clocks by simply indexing by mul-
tiple copies of natural numbers. Thus, conceptually, a type with clocks κ1
and κ2 was modelled as a two dimensional diagram of sets (as in the left part
of Figure 5.1). In this model there is no semantic correspondent to clock sub-
stitution. In particular, if τ is a type with two free clocks κ1 and κ2, then the
denotation of τ[κ1/κ2] should be a one dimensional diagram, but this is in
general not the diagonal of the denotation of τ , as one might expect. Seman-
tically, one reason is that taking the diagonal does not commute, for instance,
with the cartesian closed structure.
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...
...

...
...

X(1,3) X(2,3) X(3,3) · · · X(3)

X(1,2) X(2,2) X(3,2) · · · X(2)

X(1,1) X(2,1) X(3,1) · · · X(1)

Figure 5.1: A type with two free clocks in the new model.

We propose a new model which supports clock substitution that pre-
serves all the constructs of type theory in the correct way. The model verifies
soundness (up to solving the coherence problem, see Section 5.6) of the rules
(5.1) as understood in dependent type theory, but without the freshness side
condition on the elimination rule. Technically, this makes the calculus an
instance of polymorphic dependent type theory [51] with a family of modalities
Iκ indexed by clocks κ.

In the new model a type depending on two clocks κ1 and κ2 is modelled
as a commutative diagrams of the form in Figure 5.1: the two dimensional
grid on the left represents the typeX when clocks κ1 and κ2 are not identified
and the vertical diagram on the right represents the type X when clocks κ1
and κ2 become synchronised. The arrows inside the two and one dimensional
diagrams describe the evolution of elements when the clocks decrease and
the arrows from the diagonal of the diagram on the left to the diagram on the
right describe how the elements change when the clocks are synchronised.
This also explains why there are no arrows from the vertical diagram on the
right to the diagram on the left. Once the clocks are identified there is no
way to disentangle them. To model the substitution κ1/κ2 we simply take
the right vertical part of the diagram.

With more clocks the denotation of a type becomes more complex. For
instance when we have three clocks the denotation will have a three dimen-
sional diagram (representing the state when none of the clocks are identi-
fied), three two dimensional diagrams (representing the state when two of
the clocks are identified) and a one dimensional diagram, representing the
state when all of the clocks are identified. Arrows between the different dia-
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grams are given according to the following schema

κ1,κ2,κ3

κ1 = κ2,κ3 κ1 = κ3,κ2 κ1,κ2 = κ3

κ1 = κ2 = κ3

where, for example, κ1 = κ2,κ3 represents the diagram where clocks κ1 and
κ2 are identified, and κ3 is independent of the two.

5.2 The Basics of the New Model

We fix a countable set of clocks CV = {κ1,κ2, . . .}. The model we construct can
be briefly described as follows. Let CV be the full subcategory of the category
Set on finite subsets of CV. We build an indexed category GR on the opposite
of the category CV. For each finite set of clocks ∆, the category GR (∆) is
a model of extensional dependent type theory: term variable contexts Γ `∆,
types Γ `∆ A type and terms Γ `∆ t : A are interpreted in GR (∆). For any
f : ∆1→ ∆2 the reindexing functorGR (f ) :GR (∆1)→GR (∆2), which is used
to model clock substitution, preserves all the structure required for modeling
dependent type theory. Finally, for any inclusion ι : ∆→ ∆,κ the reindexing
functor GR (ι) : GR (∆) → GR (∆,κ) has a right adjoint ∀κ which is used to
interpret quantification over clocks.

By applying the Grothendieck construction to the indexed category GR
we can then construct a PDTT-structure [51] which is a notion of a model
of polymorphic dependent type theory. The PDTT-structure in our case is a
collection of fibrations and comprehension categories

D A
→

A B B
→

B

P

q
cod

r

Q

id
B

cod

(5.2)

where B = CVop and Q maps ∆ ⊆ CV to the inclusion ι : ∆ → ∆,κ∆, where
κ∆ is the chosen clock not in ∆. The fibration r is the fibration arising from
the Grothendieck construction applied to the indexed category GR, hence
objects of A are pairs (∆,X) with ∆ ⊆fin CV and X ∈ GR (∆). The functor r
simply maps (∆,X) to ∆. The comprehension P is constructed from compre-
hensions of GR (∆).
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The indexed category GR

For each ∆ ⊆fin CV the category GR (∆) is the category of presheaves over the
poset I (∆) which we describe first. To understand the definition of the poset
I (∆) it is useful to keep in mind the example in Figure 5.1. Let ∆ be a finite
set of clocks. An element I (∆) should indicate what is the state of clocks, i.e.,
which clock are identified, and it should indicate how much time is left on
each clock. Hence elements of I (∆) should be pairs (E,δ) of an equivalence
relation E on ∆ and a function δ : ∆→N. Since identified clocks should have
the same amount of time remaining, the function δ should respect E. The
order on I (∆) should allow us to get from state represented by (E,δ) to (E′ ,δ′)
whenever E′ identifies more clocks than E and there is no more time left on δ′

than on δ. This makes sense because we want to be able to substitute clocks,
and substitution, in general, can identify clocks. On the other hand once the
clocks are identified we can no longer separate them, hence we should not
be able to get from a state where more clocks are identified to a state where
fewer of them are. With this in mind, here are the precise definitions.

Definition 5.2.1. For ∆ ⊆fin CV let E (∆) be the set of equivalence relations
on ∆ (considered as subsets of ∆×∆).

The order relation on E (∆) is the opposite of the refinement order, con-
cretely

E ≥ E′↔ E ⊆ E′

(note the reverse inclusion). Or in other words, E′ ≤ E if whenever two ele-
ments are related by E, they are also related by E′.

The top element for this ordering is the diagonal relation d∆. The bottom
element is the relation that equates everything.

For a function f : ∆1 → ∆2 let E (f ) : E (∆2) → E (∆1) be the function
defined by pullback as

E (f ) (E) = {(κ1,κ2) | (f (κ1), f (κ2)) ∈ E} ,

i.e., clocks κ1 and κ2 are related by E (f ) (E) if they become related by E after
substitution with f . �

Definition 5.2.2. Let ∆ be a finite set of clocks. The poset I (∆) has elements
pairs (E,δ) where E ∈ E (∆) is an equivalence relation and δ : ∆ → N is a
function that respects E. This means that if (κ1,κ2) ∈ E then δ(κ1) = δ(κ2).

The order on I (∆) is component-wise:

(E,δ) ≥ (E′ ,δ′)↔ E ≥ E′ ∧ δ ≥ δ′ .

where the ordering on functions is pointwise.
For a function f : ∆1→ ∆2 the function I (f ) : I (∆2)→ I (∆1) is defined as

I (f ) (E,δ) = (E (f ) (E),δ ◦ f ) . �
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Lemma 5.2.3. For any function f : ∆1 → ∆2 the functions E (f ) and I (f ) are
monotone. Hence E and I are functors from CVop to the category of partially
ordered sets and monotone functions. ♦

The proof is a simple computation.
For use in Section 5.5 below we record a property of surjective substitu-

tions. It is proved by a simple computation.

Lemma 5.2.4. Let f : ∆1 → ∆2 be a function between clock contexts. If f is
surjective then E (f ) and I (f ) are injective. ♦

More abstractly, this property also follows from the fact that in CV any
surjective function s is a split epimorphism, hence E (s) and I (s) are split
monomorphisms and monomorphisms in the category of posets and mono-
tone functions are precisely the injective monotone functions.

We also have a dual lemma. Its proof is again simple.

Lemma 5.2.5. Let f : ∆1 → ∆2 be a function between clock contexts. If f is
injective then E (f ) and I (f ) are surjective. ♦

Definition 5.2.6. Let ∆ be a finite set of clocks. The category GR (∆) is the
category Set(I(∆))op

of (contravariant) I (∆)-indexed set valued presheaves.
For a function f : ∆1→ ∆2 let GR (f ) : GR (∆1)→ GR (∆2) be the functor

defined by precomposition with I (f ). Concretely

GR (f ) (X) = X ◦ I (f ) and GR (f ) (α)(E,δ) = αI(f )(E,δ)

where X is an object of GR (∆1), α is a natural transformation in GR (∆1) and
(E,δ) ∈ I (∆2). We will also use the notation f ∗ for the functor GR (f ). �

Basic properties of GR

For each finite set of clocks the categoryGR (∆) is a presheaf topos, hence it is
a model of extensional dependent type theory. As mentioned above we aim
to use the functors GR (f ) to interpret clock substitution and this means that
these functors must preserve constructs used to interpret dependent type
theory, in particular dependent products.

Recall first that limits and colimits in presheaf categories are constructed
pointwise. Hence because the functors GR (f ) are given by precomposition
they preserve this canonical choice of limits and colimits on the nose. More-
over, it is a standard result that each functor GR (f ) has a left and right
adjoint [66, Theorem VII.2.2] which are given by left and right Kan exten-
sions. However only the right adjoint to the functor GR (ι) for an inclusion
ι : ∆→ ∆,κ seems to be interesting for our application. We will describe it
very concretely in Section 5.4.

The fact that each of the functors GR (f ) also preserve exponentials and
local exponentials is more involved and importantly the canonical choice of
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exponentials and dependent products will not be preserved on the nose, but
only up to a canonical isomorphism.

We now show that for each f the functor GR (f ) is a locally cartesian
closed functors.

Definition 5.2.7. Let P and Q be two posets. An order-preserving function
ϕ : P →Q is a fibration if for every p ∈ P and q ∈Q such that q ≤ ϕ(p) the set

Bp,q =
{
p′ ≤ p

∣∣∣ ϕ(p′) = q
}

has a top element u(p,q) and moreover whenever q1 ≤ q2, also u(p,q1) ≤
u(p,q2). �

This definition is equivalent to a standard definition of a fibration [51].
Indeed, the cartesian lifting of the morphism q ≤ ϕ(p) is precisely the mor-
phism u(p,q) ≤ p. One immediate consequence of ϕ being a fibration is that
for each p, the restriction ϕp : ↓p→ ↓ϕ(p) is a retraction with section given
by the assignment q 7→ u(p,q). In particular ϕp is surjective.

One of main reasons fibrations are useful is the following property.

Proposition 5.2.8. Let P and Q be two posets and ϕ : P → Q a fibration. The
functor ϕ∗ : SetQ

op → SetP
op

given by precomposition with ϕ, i.e. ϕ∗(X) = X ◦ϕ,
is a locally cartesian closed functor. ♦

Proof. It is possible to show this directly, but ϕ being a fibration implies the
assumption of Lemma C.3.3.8.(ii) of Johnstone [53] which shows in particu-
lar that the functor ϕ∗ is locally cartesian closed by Proposition C.3.3.1 of loc.
cit. QED

Next, we show the crucial property. The main result is Lemma 5.2.11.
Its proof is split into Lemmas 5.2.9 and 5.2.10 for clarity. This property is
the reason for introducing the new indexing poset. It does not hold for the
indexing posets of [11, 71].

Lemma 5.2.9. Let ∆ be a finite set of clocks, κ a clock not in ∆ and ι : ∆→ ∆,κ
the inclusion. The functions E (ι) : E (∆,κ)→ E (∆) and I (ι) : I (∆,κ)→ I (∆) are
both fibrations. ♦

Proof. We prove the two claims separately. When proving that I (ι) is a fibra-
tion we use the construction of u(E,F) from the first part.

E (ι) is a fibration Let E ∈ E (∆,κ) and F ∈ E (∆) such that F ≤ E (ι) (E). We
consider two cases.

• The simpler case is when κ is only related to itself by E. In this
case we define u(E,F) = F ∪ {(κ,κ)}. Because E (ι) simply restricts
the given equivalence relation to the set ∆ we immediately have
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E (ι) (u(E,F)) = F. Further, if (κ1,κ2) ∈ E then either κ1 = κ2 = κ or
(κ1,κ2) ∈ E (ι) (E). In the first case (κ1,κ2) ∈ F by definition and in
the second case this follows from the assumption that F ≤ E (ι) (E).
Hence we have u(E,F) ≤ E. Moreover if we have any other E′ ≤ E
such that E (ι) (E′) = F we immediately see that it must be less than
u(E,F).

• In the second case we (κ,κ′) ∈ E for some κ′ ∈ ∆. We define u(E,F)
to be the extension of F to an equivalence relation on ∆,κ by re-
lating κ to κ′. This is the equivalence relation generated by the
relation F ∪ {(κ,κ′)}.
The property E (ι) (u(E,F)) = F follows easily. If E′ ≤ E is another
such that E (ι) (E′) = F then because E′ ≤ E it must be that (κ,κ′) ∈
E′ and so E′ ⊇ F ∪ {(κ,κ′)}. Because u(E,F) is defined to be the
equivalence relation generated by F∪{(κ,κ′)}we have by definition
E′ ⊇ u(E,F) which by definition of the order on E (∆,κ) means E′ ≤
u(E,F).

Finally, to see that the assignment u(E,−) is order-preserving suppose
F1 ≤ F2. Observe that the cases above in the construction of u(E,F1)
and u(E,F2) only depend on the relation E and each case it is straight-
forward that u(E,F1) ≤ u(E,F2).

I (ι) is a fibration Let (E,δ) ∈ I (∆,κ) and (F,γ) ∈ I (∆) be such that

(F,γ) ≤ I (ι) (E,δ).

We again consider two cases.

• If κ is only related to itself in E then we define

u((E,δ), (F,γ)) = (u(E,F),δ′)

where

δ′(κ′) =

γ(κ′) if κ′ ∈ ∆
δ(κ′) otherwise

Note that because we require δ′ ◦ ι = γ the function δ′ is uniquely
determined on ∆. Because u(E,F) only relates κ to κ we have that
δ′ respects u(E,F), hence u((E,δ), (F,γ)) is well-defined as an ele-
ment of I (∆,κ). The fact that I (ι) maps it to (F,γ) is clear and the
fact that it is the largest such also follows directly.

• If (κ,κ1) ∈ E for some κ1 ∈ ∆. We define

u((E,δ), (F,γ)) = (u(E,F),δ′)
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where

δ′(κ′) =

γ(κ′) if κ′ ∈ ∆
γ(κ1) if κ′ = κ

It is immediate from the description of u(E,F) above that δ′ re-
spects it. Again, on the set ∆ the function δ′ is uniquely deter-
mined and because by assumption γ ≤ δ◦ιwe have that δ′◦ι ≤ δ◦ι
so to show δ′ ≤ δ we only need to check that δ′(κ) ≤ δ(κ). This
holds because (κ,κ1) ∈ E implies δ(κ) = δ(κ1) which together with
the assumption γ ≤ δ ◦ ι shows the required relation.
The fact u((E,δ), (F,γ)) is the largest such follows directly. In fact
in this case u((E,δ), (F,γ)) is unique as an element of B(E,δ),(F,γ).

The fact that the assignment u((E,δ),−) is order-preserving again fol-
lows easily because the cases we considered in defining it only depend
on E. In each case it is obvious that the assignment is order-preserving.

QED

Lemma 5.2.10. Let ∆1,∆2 be two finite sets of clocks and f : ∆1→ ∆2 a surjec-
tive function. Then E (f ) : E (∆2)→ E (∆1) and I (f ) : I (∆2)→ I (∆1) are both
fibrations. ♦

Proof. The construction of u(E,F) and u((E,δ), (F,γ)) in this case is more di-
rect.

E (f ) is a fibration Let E ∈ E (∆2) and F ∈ E (∆1) such that F ≤ E (f ) (E). We
define u(E,F) as

u(E,F) =
{
(κ,κ′)

∣∣∣ ∃(κ1,κ2) ∈ F,f (κ1) = κ∧ f (κ2) = κ′
}

It is not immediately clear that the relation we have defined is an equiv-
alence relation. It is clearly symmetric and because f is surjective it
is reflexive. To see that it is transitive suppose (κ,κ′) ∈ u(E,F) and
(κ′ ,κ′′) ∈ u(E,F). This gives us (κ1,κ2) ∈ F and (κ′1,κ

′
2) ∈ F such that

f (κ1) = κ,f (κ2) = f (κ′1) = κ′ and f (κ′2) = κ′′. If we have (κ1,κ
′
2) ∈ F then

by definition (κ,κ′′) ∈ u(E,F). Because E is reflexive we have (κ′ ,κ′) ∈ E
and so (κ2,κ

′
1) ∈ E (f ) (E). From the assumption F ≤ E (f ) (E) we thus

have (κ2,κ
′
1) ∈ F and so by transitivity of F we have (κ1,κ

′
2) ∈ F as

needed.

Next, suppose (κ,κ′) ∈ E and κ1,κ2 such that f (κ1) = κ and f (κ2) = κ′.
Then (κ1,κ2) ∈ E (f ) (E) and from the assumption F ≤ E (f ) (E) we have
(κ1,κ2) ∈ F which further implies (κ,κ′) ∈ u(E,F). We have thus shown
u(E,F) ≤ E.
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To see that E (f ) (u(E,F)) = F we show two inclusions. The inclusion
F ⊆ E (f ) (u(E,F)) is immediate. For the converse inclusion assume
(κ,κ′) ∈ E (f ) (u(E,F)). By definition (f (κ), f (κ′)) ∈ u(E,F) so there ex-
ist (κ1,κ2) ∈ F such that f (κ′) = f (κ1) and f (κ′) = f (κ2). Because E is
reflexive we have (κ,κ1) ∈ E (f ) (E) and (κ′ ,κ2) ∈ E (f ) (E). From the as-
sumption that F ≤ E (f ) (E) we thus have (κ,κ1) ∈ F and (κ′ ,κ2) ∈ F from
which it follows that (κ,κ′) ∈ F as needed.

The fact that the assignment u(E,F) is monotone in F is clear directly
from the definition.

I (f ) is a fibration Let (E,δ) ∈ I (∆2) and (F,γ) ∈ I (∆1) such that (F,γ) ≤
I (f ) (E,δ). Define u((E,δ), (F,γ)) = (u(E,F),δ′) where we define δ′(κ) =
γ(κ′) for some κ′ such that f (κ′) = κ. In order for this to be a good
definition we need to show that it is independent of the chosen κ′.
If f (κ′) = f (κ′′) then (κ′ ,κ′′) ∈ E (f ) (E) because E is reflexive and so
(κ′ ,κ′′) ∈ F. Because γ respects F we have γ(κ′) = γ(κ′′), so δ′ is well-
defined good.

Using the same reasoning it is immediate that δ′ ◦ f = γ and because f
is surjective δ′ is unique such. To see that δ′ ≤ δ we have δ(κ) = δ(f (κ′))
for some κ′, because f is surjective. From the assumption γ ≤ δ ◦ f we
thus get γ(κ′) ≤ δ(κ) for any κ and for any κ′ such that f (κ′) = κ. By
definition γ(κ′) = δ′(κ), hence δ′(κ) ≤ δ(κ).

Monotonicity of the assignment u((E,δ), (F,γ)) is again immediate from
the construction. QED

Lemma 5.2.11. Let ∆1,∆2 be two finite sets of clocks and f : ∆1→ ∆2 a function.
Then E (f ) : E (∆2)→ E (∆1) and I (f ) : I (∆2)→ I (∆1) are both fibrations. ♦

Proof. Any function f : ∆1 → ∆2 factors as a surjection s : ∆1 → f [∆1] onto
the image f [∆1] of f followed by the inclusion of f [∆1] into ∆2. In turn
the inclusion f [∆1] to ∆2 factors as a sequence of inclusions ιi of the form
∆ → ∆,κ. Because E and I are contravariant functors this implies that for
every f , E (f ) factors as E (s) ◦ E (ι1) ◦ · · · ◦ E (ιn) for some n. Analogously for
I (f ). Since composition of fibrations is a fibration Lemmas 5.2.9 and 5.2.10
conclude the proof of this lemma. QED

Remark 5.2.12. A careful reader will have noticed that the preceding three
lemmas do not rely on the natural numbers N being the underlying poset.
More precisely, if we take any poset P and define I (∆) to be pairs (E,δ) with
E ∈ E (∆) and δ : ∆→ P with the same order as before then we can also define
the action of I on morphisms in the same way as before. The preceding
lemmas then generalise to show that all morphism I (f ) are fibrations. �

Finally Lemma 5.2.11 and Proposition 5.2.8 combine to prove the follow-
ing theorem.
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Theorem 5.2.13. Let f : ∆1 → ∆2 be a function between clock contexts. The
functor GR (f ) is a locally cartesian closed functor. ♦

Remark 5.2.14. As we mentioned already the functorsGR (f ) do preserve the
natural choice of limits and colimits on the nose. However there does not ap-
pear to be a natural choice of exponentials or dependent products such that
GR (f ) would preserve them on the nose. In particular the most problematic
is the case when f is not surjective, which is the case that corresponds to
clock weakening. The problem already appears with the inclusion of GR (∅),
which is isomorphic to the category Set, into GR (κ), which is isomorphic
to the topos of trees. Given two objects X,Y ∈ GR (κ) the canonical expo-
nential (X ⇒ Y ) at n ∈ N consists of n-tuples of functions fi : X(i) → Y (i)
for i = 1,2, . . . ,n satisfying naturality conditions. If X = GR (ι) (X ′) and Y =
GR (ι) (Y ′) then the naturality conditions force all fi : X(i)→ Y (i) to be equal,
so the set of all such n-tuples is certainly isomorphic to the set of functions
X ′→ Y ′, but not equal. And X ′→ Y ′ is precisely GR (ι) (X ′→ Y ′) at n. �

5.3 The Iκ Functors

Let ∆ be a clock context and κ ∈ ∆. We now define the functor Iκ on GR (∆)
and the natural transformation nextκ : idGR(∆) → Iκ such that the triple
(GR (∆) ,Iκ,nextκ) is a model of guarded recursive terms [22, Definition 6.1].

Example 5.3.1. To understand the definition recall the diagram X with two
clocks in Figure 5.1. We wish clock substitution to preserve I in the sense
that f ∗ (Iκ1 Iκ2X) is the same as Iκ1 Iκ1 (f ∗(X)) for all X ∈ GR (κ1,κ2) and
where f : κ1,κ2 → κ2 is the unique function. Recall that f ∗(X) projects out
the one dimensional diagram on the right in Figure 5.1. We thus see that the
diagram Iκ1 Iκ2X should be

1 X(1,2) X(2,2) · · · X(1)

1 X(1,1) X(2,1) · · · 1

1 1 1 · · · 1

In particular notice that the one dimensional diagram on the left is delayed
twice, because it represents the state when κ1 and κ2 are identified. �

To define Iκ in general we start with an auxiliary definition.



5.3. The Iκ Functors 191

Definition 5.3.2. Let κ ∈ ∆ ⊆fin CV, E ∈ E (∆) and δ : ∆→N. The function
δ−κ : ∆→N is defined as

δ−κ(κ′) =

max{1,δ(κ)− 1} if (κ,κ′) ∈ E
δ(κ′) otherwise

�

The thing to notice in this definition is that all the clocks equivalent to
κ have their remaining time decreased by 1. This is crucial for clock sub-
stitution to commute with Iκ in the appropriate way, as illustrated in Ex-
ample 5.3.1 above. Decreasing the value of all the clocks related to κ also
ensures that if δ respects E then so does δ−κ. This implies (E,δ−κ) ∈ I (∆).

Technically δ−κ depends on δ, κ and the equivalence relation E. We leave
E implicit though since it can always be inferred from context. We record the
basic properties of this construction in the following lemma whose proof is
by simple computation.

Lemma 5.3.3.

• For any (E,δ) ∈ E (∆) and any κ ∈ ∆, (E,δ−κ) ≤ (E,δ).

• If (E1,δ1) ≤ (E2,δ2) then (E1,δ
−κ
1 ) ≤ (E2,δ

−κ
2 ).

• Let f : ∆1→ ∆2 be a function and (E,δ) ∈ I (∆2). For any κ ∈ ∆1 the pairs(
E (f ) (E),δ−f (κ) ◦ f

)
and (E (f ) (E), (δ ◦ f )−κ)

are both in I (∆1) and moreover they are equal. ♦

The definition of Iκ :GR (∆)→GR (∆) is now simple.

Definition 5.3.4. Let κ ∈ ∆ ⊆fin CV and X an object of GR (∆). The action of
the functor Iκ on objects is

Iκ(X)(E,δ) =

1 if δ(κ) = 1

X (E,δ−κ) otherwise

Iκ(X) ((E1,δ1) ≤ (E2,δ2)) =

! if δ1(κ) = 1

X
(
(E1,δ

−κ
1 ) ≤

(
E2,δ

−κ
2

))
otherwise

where 1 is the singleton set {∗} and ! is the unique arrow to 1. On morphisms

Iκ(α)E,δ =

id1 if δ(κ) = 1

αE,δ−κ otherwise

There is an associated natural transformation nextκ : idGR(∆)→ Iκ

nextκX (E,δ)(x) =

∗ if δ(κ) = 1

X ((E,δ−κ) ≤ (E,δ)) (x) otherwise
�
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It is easy to see that Iκ preserves all limits, since these are given pointwise
and any limit of any diagram of terminal objects is a terminal object. It does
not preserve colimits, however. For example it does not preserve the initial
object.

Proposition 5.3.5 (Properties of I). Let ∆1 and ∆2 be two clock contexts and
f : ∆1 → ∆2 a function between them. Let κ ∈ ∆1 be a clock. The following
properties hold.

1. Let X,Y be two objects in GR (∆1) and α : Y ×Iκ(X)→ X a natural trans-
formation. There exists a unique β : Y → X such that

α ◦
〈
idY ,nextκX ◦β

〉
= β.

We write fixκ(α) for this unique fixed point. Moreover, for any γ : Z→ Y

fixκ(α) ◦γ = fixκ (α ◦γ × idY )

which expresses naturality of fixed points.

2. Clock substitution preserves I, i.e.

f ∗ ◦Iκ = If (κ)◦f ∗,

and for every X ∈GR (∆),

f ∗
(
nextκX

)
= nextf (κ)

f ∗(X) .

3. Let α : Y × IκX → X be a morphism in GR (∆1). From the fact that f ∗

preserves products on the nose and the previous item the morphism f ∗(α)
has type f ∗(Y )×If (κ) f ∗(X)→ f ∗(X) and moreover

f ∗ (fixκ(α)) = fixf (κ) (f ∗(α)) . ♦

Proof. The fixed point β at (E,δ) is defined by induction on δ(κ) as

βE,δ(y) =

αE,δ(y,∗) if δ (κ) = 1

αE,δ
(
y,βE,δ−κ (Y ((E,δ−κ) ≤ (E,δ)) (y))

)
otherwise

Naturality and uniqueness follow by an analogous induction on δ(κ).
Item (2) is shown by simple computation using Lemma 5.3.3. For item (3)

we have

f ∗ (fixκ(α)) = f ∗
(
α ◦

〈
idY ,nextκX ◦fixκ(α)

〉)
= f ∗(α) ◦

〈
idf ∗(Y ),nextf (κ)

f ∗(X)◦f
∗ (fixκ(α))

〉
.

from Item (2) and the fact that f ∗ preserves products on the nose. Uniqueness
of the fixed point for f ∗(α) (item (1)) then shows the desired equality. QED



5.4. Clock Quantification 193

The facts above show that for each clock context ∆ and κ ∈ ∆, the triple
(GR (∆) ,Iκ,nextκ) is a model of guarded recursive terms [22, Definition 6.1].
Hence for each object X ∈ GR (∆) the slice category GR (∆) /X also admits a
IκX functor defined by pullback [22, Theorem 6.3]

IκX Y IκY

X IκX

IκX α Iκα

nextκ

This comes with the associated morphism nextκ,X in GR (∆) /X. Moreover,
for f : ∆→ ∆′ we easily conclude from Proposition 5.3.5 and the fact that the
functor f ∗ preserves all limits on the nose that

f ∗
(
IκX Y

)
= If (κ)

f ∗(X) f
∗(Y ).

Note that this is equality of objects in the slice over f ∗(X).
The functor IκX also comes equipped with a natural transformation

nextκ,X : id→ IκX .

The component nextκ,XY : Y → IκX Y for α : Y → X in the slice over X is the
unique dotted arrow

Y

IκX Y IκY

X IκX

α

nextκY

IκX α Iκα

nextκ

which exists by naturality of nextκ. Again, because the functors f ∗ preserve
pullbacks on the nose and Proposition 5.3.5, we have

f ∗
(
nextκ,X

)
= nextf (κ),f ∗(X)

so clock substitution behaves well also with respect to Iκ and nextκ in slices.

5.4 Clock Quantification

For any ∆ ⊆fin CV and clock κ < ∆ the inclusion function ι : ∆→ ∆,κ gives
rise to the weakening functor ι∗ : GR (∆)→ GR (∆,κ). Because ι∗ is defined by
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precomposition with I (ι) it has a right (as well as left) adjoint [66, Theorem
VII.2.2]. We shall call this right adjoint ∀κ and in this section we provide
a more explicit description of it, which will provide some more intuition
behind it and its relation to coinductive types.

To understand the general definition let us look at two concrete instances.
First, the functor GR (∅)→ GR (κ) maps a set X to a diagram which is con-
stantly X and whose restrictions are identities, i.e., a constant presheaf. It is
well known that the right adjoint to this functor is the limit functor.

More interesting is the case with two clocks from Figure 5.1. The object
∀κ2.X is a one dimensional diagram and at stage n it is the limit (in Set) of
the diagram

X(n,1) X(n,2) X(n,3) X(n,4) · · ·

The idea is that the type (∀κ2.X)(n) contains information about X(n,k) for all
times k. Note that in particular the one dimensional diagram which repre-
sents the state of X when the clocks κ1 and κ2 are identified is ignored.

To define the right adjoint of the inclusion in general we need some aux-
iliaries.

Lemma 5.4.1. Let ∆ be a clock context and ι : ∆ → ∆,κ the inclusion. Then
E (ι) : E (∆,κ)→ E (∆) has a right adjoint ι! defined explicitly as

ι!(E) = {(κ1,κ2) | (κ1,κ2) ∈ E ∨κ1 = κ2 = κ} = E ∪ {(κ,κ)} ♦

In contrast the function I (ι) does not have a right adjoint, the reason being
that N does not have a top element. However for each n ∈N we can define a
function ι!n

ι!n : I (∆)→ I (∆,κ)

ι!n(E,δ) = (ι!(E),δ!
n)

where δ!
n(κ′) =

δ(κ′) if κ′ ∈ ∆
n if κ′ = κ

Using the description of ι! in Lemma 5.4.1 it is immediate that δ!
n respects

ι!(E). We record some useful properties for use below. The properties follow
immediately from the definitions above.

Lemma 5.4.2. Let ∆ be a clock context, κ < ∆ and ι : ∆→ ∆,κ the inclusion.

1. If n ≤m and (E,δ) ≤ (E′ ,δ′) then ι!n(E,δ) ≤ ι!m(E′ ,δ′).

2. For any (E,δ) ∈ I (∆,κ) we have (E,δ) ≤ ι!δ(κ) (I (ι) (E,δ)).

3. For any (E,δ) ∈ I (∆) and any n ∈N we have I (ι)
(
ι!n(E,δ)

)
= (E,δ).

4. For any (E,δ) ∈ I (∆) and κ′ ∈ ∆, δ!
n
−κ′ =

(
δ−κ

′)!

n
.
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5. Let f : ∆1 → ∆2 be a function between two clock contexts, and let κ <
∆1 ∪∆2 be a clock. Let and ι : ∆1 → ∆1,κ and υ : ∆2 → ∆2,κ be the two
inclusions. Then for any n ∈N and any (E,δ) ∈ I (∆2)

ι!n (I (f ) (E,δ)) = I (f + idκ) (υ!
n(E,δ))

where f + idκ is the obvious extension of f to a function ∆1,κ→ ∆2,κ. ♦

Remark 5.4.3. Analogously to Remark 5.2.12, Lemma 5.4.2 remains true if
we replace the poset N by an arbitrary poset P . �

We are now ready to describe the right adjoint ∀κ to ι∗. Let ∆ be a clock
context, κ a clock not in ∆ and ι : ∆→ ∆,κ the inclusion.

Define ∀κ : GR (∆,κ)→ GR (∆) on an object X ∈ GR (∆,κ) at stage (E,δ) ∈
I (∆) by taking the limit (in Set) of the diagram of restrictions

X
(
ι!1(E,δ)

)
X

(
ι!2(E,δ)

)
X

(
ι!3(E,δ)

)
· · ·

where the arrows are X’s restrictions using Lemma 5.4.2. The restrictions
of ∀κ.(X) and the action of ∀κ on morphisms are determined purely for-
mally from the universal properties of limits. The unit η of the adjunction is
constructed using the universal property of the limit using Lemma 5.4.2.(3)
which shows that the diagram

ι∗(X)
(
ι!1(E,δ)

)
ι∗(X)

(
ι!2(E,δ)

)
ι∗(X)

(
ι!3(E,δ)

)
· · · (5.3)

is a constant diagram. The counit ε is constructed with the projections of the
limit together with Lemma 5.4.2.(2). In more detail, the component of the
counit ε at an object X is a morphism εX : ι∗(∀κ(X))→ X in GR (∆,κ) and so
at stage (E,δ) we must define a function

εX(E,δ) : ι∗(∀κ(X))(E,δ)→ X(E,δ)

which is a function from the limit of

X
(
ι!1 (I (ι) (E,δ))

)
X

(
ι!2 (I (ι) (E,δ))

)
· · · X

(
ι!δ(κ) (I (ι) (E,δ))

)
· · ·

to X(E,δ). There is a projection from the limit to X
(
ι!δ(κ) (I (ι) (E,δ))

)
and from

Lemma 5.4.2.(2) we have (E,δ) ≤ ι!δ(κ) (I (ι) (E,δ)) which means there is a func-
tion

X
(
(E,δ) ≤ ι!δ(κ) (I (ι) (E,δ))

)
: X

(
ι!δ(κ) (I (ι) (E,δ))

)
→ X(E,δ).

Since the diagram is in Set we could describe the limit very explicitly as
the set of compatible sequences. This is useful for checking some properties,
but we omit it here due to lack of space.

Equipped with this description of ∀κ we are able to show the necessary
properties for interpreting the rules of the type theory.
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Proposition 5.4.4 (Properties of ∀κ). Let ∆ be a clock context and κ ∈ CV a
clock not in ∆. The functor ∀κ satisfies the following properties.

1. The unit η of the adjunction ι∗ a ∀κ is a natural isomorphism. Hence ι∗ is
a full and faithful functor witnessing that GR (∆) is a full subcategory of
GR (∆,κ).

2. The functor ∀κ preserves all coproducts, but not colimits in general.

3. For any object X ∈GR (∆,κ) the canonical morphism c : ∀κ.X→∀κ.(IκX)
defined as c = ∀κ.

(
nextκX

)
is an isomorphism.

4. (Beck-Chevalley condition for ∀κ) Let f : ∆1→ ∆2 be a function between
two clock contexts, and let κ < ∆1 ∪∆2 be a clock.

For every X ∈GR (∆1,κ) the presheaves f ∗(∀κ.X) and ∀κ. (f + idκ)∗ (X) are
equal and the canonical morphism

∀κ.((f + idκ)∗(ε)) ◦ ηf
∗(∀κ.X) (5.4)

from f ∗(∀κ.X) to ∀κ. (f + idκ)∗ (X) is the identity. As a consequence, the
functors ∀κ ◦ (f + idκ)∗ and f ∗ ◦∀κ are equal and further we have

f ∗(ηX) = ηf
∗(X). (5.5)

5. Let ∆ be a clock context, κ′ ∈ ∆, κ < ∆ and X ∈ GR (∆,κ) the canonical
morphism

∀κ.(Iκ
′
(ε)) ◦ η : Iκ

′
(∀κ.X)→∀κ.Iκ

′
X

is an isomorphism. ♦

Proof. 1. Using Lemma 5.4.2.(3) the object ∀κ.ι∗(X) at stage (E,δ) is the
limit of the constant diagram (5.3). Because the diagram is connected
its limit is isomorphic to X(E,δ) by the unique mediating map, which
is by definition the unit η. The second part is a standard fact about
adjoint functors [65, Theorem IV.3.1].

2. The reason this property holds is that coproducts are given pointwise
and that in Set coproducts commute with connected limits.

3. The arrow ∀κ.(nextκX) at stage (E,δ) ∈ I (∆) is by definition the mediat-
ing map from the limit of

X
(
ι!1(E,δ)

)
X

(
ι!2(E,δ)

)
X

(
ι!3(E,δ)

)
· · ·

to the limit of

1 X
(
ι!1(E,δ)

)
X

(
ι!2(E,δ)

)
X

(
ι!3(E,δ)

)
· · ·

so it is an isomorphism.
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4. Let X ∈ GR (∆1,κ) and (E,δ) ∈ I (∆2). Let and ι : ∆1 → ∆1,κ and υ :
∆2→ ∆2,κ be the two inclusions. Then

f ∗(∀κ.X)(E,δ) = (∀κ.X) (I (f ) (E,δ))

and by definition (∀κ.X) (I (f ) (E,δ)) is the limit of the diagram

X
(
ι!1 (I (f ) (E,δ))

)
X

(
ι!2 (I (f ) (E,δ))

)
· · ·

By Lemma 5.4.2.(5) this diagram is the same as the diagram

X
(
I (f + idκ) (υ!

1(E,δ))
)

X
(
I (f + idκ) (υ!

2(E,δ))
)

· · ·

which by definition is the diagram

(f + idκ)∗(X)
(
υ!

1(E,δ)
)

(f + idκ)∗(X)
(
υ!

2(E,δ)
)

· · ·

which is the limit used to define ∀κ. (f + idκ)∗ (X) Hence f ∗(∀κ.X)(E,δ)
and ∀κ. (f + idκ)∗ (X) are limits of the same (not isomorphic, but identi-
cal) diagrams, hence they are equal.

The fact that (5.4) is the identity follows by the fact that it is defined
using the universal property of limits as follows. Let (E,δ) ∈ I (∆2). Let
π1
n be the projection from ∀κ. (f + idκ)∗ (X)(E,δ) to (f +idκ)∗(X)(υ!

n(E,δ))
and π2

n the projection from f ∗(∀κ.X)(E,δ) to X
(
ι!n (I (f ) (E,δ))

)
. Note

that by the preceding part of the proof these are the same functions,
since the limits are over the same diagram. Then by definition of the
action of ∀κ on morphisms and the definition of η we have for x ∈
f ∗(∀κ.X)(E,δ).

π1
n

(
(∀κ.((f + idκ)∗(ε)))(E,δ)(η

f ∗(∀κ.X)
(E,δ) (x))

)
=

((f + idκ)∗(ε))υ!
n(E,δ)

(
η
f ∗(∀κ.X)
(E,δ)

(
π2
n(x)

))
By definition of reindexing functors we have

((f + idκ)∗(ε))υ!
n(E,δ) = εI(f +idκ)(υ!

n(E,δ)).

and all projections of

η
f ∗(∀κ.X)
(E,δ)

(
π2
n(x)

)
are the element π2

n(x) by definition of η. Hence by definition of ε, defi-
nition of ι!n and Lemma 5.4.2.(3) we have

((f + idκ)∗(ε))υ!
n(E,δ)

(
η
f ∗(∀κ.X)
(E,δ)

(
π2
n(x)

))
=

X
(
ι!n (I (f ) (E,δ)) ≤ ι!n (I (f ) (E,δ))

)
(π2
n(x))

= π2
n(x)
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Because π2
n = π1

n the same property holds for the identity function.
Thus by uniqueness of mediating morphisms for limits (5.4) must be
the identity.

Equality (5.5) is a standard consequence of the Beck-Chevalley con-
dition as follows. Indeed from the fact that (5.4) is the identity on
f ∗(∀κ.X) on any X we have for any X

f ∗(ηX) = ∀κ.((f + idκ)∗(ε)) ◦ ηf
∗(∀κ.ι∗(X)) ◦ f ∗(ηX)

which by naturality of ηf
∗(∀κ.ι∗(X)) and functoriality of ∀κ ◦ (f + idκ)∗ is

= ∀κ.((f + idκ)∗(ε ◦ ι∗(ηX))) ◦ ηf
∗(X)

and by one of the triangle identities ε ◦ ι∗(ηX) = id, hence

= ηf
∗(X)

as claimed.

5. Follows by computation and Lemma 5.4.2.(4). Note that to even state
it Proposition 5.3.5 is used to get ι∗ ◦Iκ′ = Iκ

′ ◦ι∗ so we could apply the
counit ε. QED

Extension of clock quantification to slice categories

Let ∆1,∆2 ⊆fin CV be two clock contexts and f : ∆1 → ∆2 a function. For
any X ∈ GR (∆1) the functor f ∗ : GR (∆1) → GR (∆2) induces a functor f ∗X :
GR (∆1) /X→GR (∆2) /f ∗(X) on the slice categories in the usual way.

Specializing, let ∆ be a finite set of clocks, κ < ∆ and ι : ∆ → ∆,κ the
inclusion. The functor ι∗ : GR (∆)→ GR (∆,κ) induces for each X ∈ GR (∆) a
functor

ι∗X :GR (∆) /X→GR (∆,κ) /ι∗(X)

between slice categories. Similarly the functor ∀κ : GR (∆,κ) → GR (∆) in-
duces a functor

GR (∆,κ) /ι∗(X)→GR (∆) /(∀κ.ι∗(X))

and because ∀κ ◦ ι∗ � idGR(∆) we get an induced functor

∀Xκ :GR (∆,κ) /ι∗(X)→GR (∆) /X.

Concretely, given an object α : Y → ι∗(X) of GR (∆,κ) /ι∗(X) we have

∀Xκ.(α) =
(
ηX

)−1
◦∀κ.(α)

and its action on morphisms is the action of ∀κ on morphisms. Standard
abstract nonsense then shows that this functor is right adjoint to the functor
ι∗X . The units and counits of the adjunction are the unit and the counit of the
adjunction ι∗ a ∀κ.
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Proposition 5.4.5 (Properties of ∀κ on slices). Let ∆ be a clock context and
κ ∈ CV a clock not in ∆. Let X ∈ GR (∆). The functor ∀Xκ satisfies the following
properties.

1. The unit of the adjunction ι∗X a ∀Xκ is a natural isomorphism. Hence ι∗X is
a full and faithful functor witnessing that GR (∆) /X is a full subcategory of
GR (∆,κ) /ι∗(X).

2. The functor ∀κX preserves coproducts.

3. For any object Y ∈GR (∆,κ) /ι∗(X) the canonical morphism

c : ∀Xκ.Y →∀Xκ(IκY X)

defined as c = ∀Xκ.
(
nextκ,XY

)
is an isomorphism.

4. (Beck-Chevalley condition for ∀Xκ) Let ∆2 be another clock context such
that κ < ∆2. Let f : ∆→ ∆2 be a function between the two clock contexts.

For every Y ∈GR (∆,κ) /ι∗(X) the objects

f ∗X(∀Xκ.Y ) and ∀f ∗(X)κ. (f + idκ)∗ι∗(X) (Y )

are equal and the canonical morphism

∀f ∗(X)κ.((f + idκ)∗ι∗(X)(ε)) ◦ ηf
∗
X (∀Xκ.Y ) (5.6)

from f ∗X(∀κ.Y ) to ∀f ∗(X)κ. (f + idκ)∗ι∗(X) (Y ) is the identity.

5. Let κ′ ∈ ∆. Let Y ∈GR (∆,κ) /ι∗(X). The canonical morphism

∀Xκ.(Iκ
′

X (ε)) ◦ η : Iκ
′

X (∀Xκ.Y )→∀Xκ.Iκ
′

X Y

is an isomorphism. ♦

Proof. These properties follow from corresponding properties for the func-
tor ∀κ stated and proved in Proposition 5.4.4. We exemplify this by proving
item 3. Recall that given an object α : Y → ι∗(X) in GR (∆,κ) /ι∗(X), the mor-
phism nextX,κY is the unique dotted mediating morphism in the diagram

Y

I
ι∗(X)
κ Y IκY

ι∗(X) Iκ ι∗(X)

nextκY

α

nextκ,XY

y
i

Iκα

nextκι∗(X)
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Applying the functor ∀κ, which is a right adjoint, hence preserves pullbacks,
to the diagram we have the diagram

∀κ.Y

∀κ.Iι
∗(X)
κ Y Iκ∀κ.Y

∀κ.ι∗(X) Iκ∀κ.ι∗(X)

∀κ.nextκY

∀κ.α

∀κ.nextκ,XY

y
∀κ.i

∀κ.Iκα

∀κ.nextκι∗(X)

Recall that by definition ∀Xκ.nextκ,XY is just ∀κ.nextκ,XY so we wish to show
that this morphism is an isomorphism. By Proposition 5.4.4 the morphisms
∀κ.nextκι∗(X) and ∀κ.nextκY are isomorphisms. Thus because a pullback of
an isomorphism is an isomorphism, the morphism ∀κ.i is an isomorphism.
Hence so is ∀κ.nextκ,XY , since from the commutativity of the diagram we have

∀κ.nextκ,XY = (∀κ.i)−1 ◦∀κ.nextκY . QED

5.5 Universes

We follow previous work [18, 71] and use Hofmann and Streicher’s con-
struction of universes in presheaf toposes from Grothendieck universes [49]
which we now recall instantiated to our special case. We first recall what a
Grothendieck universe is and what a universe in a locally cartesian closed
category is.

Definition 5.5.1. A Grothendieck universe is a set U satisfying the following
properties.

• U is a transitive set: if x ∈ A and A ∈U then x ∈U.

• For all A ∈U the power set P (A) is in U.

• N ∈U1

• If I ∈U and A : I →U is an I-indexed collection of elements of U then⋃
i∈I A(i) ∈U.

1Often the assumption that N ∈U is weakened to ∅ ∈U or even omitted entirely, in which
case the empty set is an example of a Grothendieck universe. Since we will need N ∈U in all
our universes we assume all our universes are such.
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�

Using the usual encodings of operations in set theory it is possible to show
that U is closed under small products, small disjoint unions and function
spaces. By this we mean if I ∈U and A : I →U is an I-indexed collection of
elements of U then∏

i∈I
A(i) ∈U and

∑
i∈I
A(i) ∈U

where
∏

is the product and
∑

is the disjoint union. By being closed under
function spaces we mean that if A,B ∈U then the set of functions from A to
B is in U.

The existence of such a Grothendieck universe is equivalent to the ex-
istence of a strongly inaccessible cardinal [94], so outside of pure ZFC set
theory. Existence of a strongly inaccessible cardinal is however a common
assumption underlying many results in set theory.

Definition 5.5.2. Let C be a locally cartesian closed category with coproducts
and a natural numbers object N. Let el : E → U be a morphism in C. A
morphism f : A→ Γ is small with respect to el, or el-small, if there exists a
morphism f : Γ → U such that f appears as the pullback of el along f as in
the following diagram.

A E

Γ U

y
f

f

el

f

(5.7)

The morphism f is called a code of f . An object Γ is small if the unique map
Γ → 1 is small.

The morphism el is a universe if the objects 0, 1, N are small and the
notion of smallness is closed under composition, finite coproducts and small
dependent products. �

By the “notion of smallness is closed under small dependent products”
we mean that if α : A→ Γ and β : B→ A are el-small then Π(α,β) ∈ C/Γ is
el-small. Here Π(α,−) is the right adjoint to pullback along α.

In general a small map f : A→ Γ can have many different codes and for
a given code f there can be many morphism f making the diagram (5.7) a
pullback. Indeed, if f is such a morphism and α : A→ A is an automorphism
satisfying f ◦α = f then replacing f with f◦α yields another pullback and in
general f◦α will be different from f.

Remark 5.5.3. The map el is always small, since it is a pullback of el along
the identity. �
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Example 5.5.4. Let U be a Grothendieck universe. Let E be the disjoint
union

∑
A∈EA and el : E → U the first projection. Then el is a universe in

Set.
An object A ∈ Set is small precisely when it is isomorphic (in Set) to an

element of U. A morphism f : A→ B is small precisely when for all b ∈ B,
the fibre f −1(b) is isomorphic to a set in U. �

We now recall the construction of universes in presheaf toposes specia-
lised to our presheaf categories.

Definition 5.5.5 (Hofmann-Streicher [49]). Let U be a Grothendieck uni-
verse and ∆ ⊆fin CV. Let the presheaf V ∆ ∈ GR (∆) be defined at (E,δ) ∈ I (∆)
as

V ∆(E,δ) = U
↓ (E,δ)op

where ↓ (E,δ) is the poset on elements

↓ (E,δ) =
{
(E′ ,δ′) ∈ I (∆)

∣∣∣ (E′ ,δ′) ≤ (E,δ)
}

with order inherited from I (∆). The set U↓ (E,δ)op
is the set of presheaves D

on ↓ (E,δ) such that for all (E′ ,δ′) ∈ ↓ (E,δ) we have D(E′ ,δ′) ∈U.
The action of V ∆ on morphisms is by precomposition:

V ∆ ((E1,δ1) ≤ (E2,δ2)) (D) =D ◦ ι

where ι is the inclusion of ↓ (E1,δ1) to ↓ (E2,δ2).
The presheaf of elements EV

∆
is defined as

EV∆ (E,δ) =
∑

D∈V ∆(E,δ)

D(E,δ)

with restrictions

EV∆ ((E1,δ1) ≤ (E2,δ2)) (D,x) = (D ◦ ι,D((E1,δ1) ≤ (E2,δ2))(x)) .

The Hofmann-Streicher universe is the first projection u∆ : EV
∆
→ V ∆ defined

as
u∆E,δ(D,x) =D. �

Hofmann and Streicher [49] show that u∆ is a universe, so in particu-
lar it is closed under dependent products and dependent sums (equivalently
composition).

The following proposition will be useful. It implies in particular that all
monomorphisms are small.

Proposition 5.5.6 (Hofmann-Streicher [49]). A morphism f : A → Γ is u∆-
small if and only if for all (E,δ) ∈ I (∆) the component fE,δ : A(E,δ)→ Γ (E,δ) is
small with respect to the universe el constructed in Example 5.5.4. ♦
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The universe is closed under Iκ

Lemma 5.5.7. Let κ ∈ ∆ ⊆fin CV. There is a morphism .̂κ : IκV ∆→ V ∆ making
the following diagram a pullback. In other words, Iκ u∆ is u∆-small.

IκEV
∆

EV
∆

IκV ∆ V ∆

y
Iκ u∆ u∆

.̂κ

♦

Proof. Using Proposition 5.5.6 it suffices to show that all components of the
natural transformation Iκ u∆ are small. They are small because they are ei-
ther components of u∆ or the identity on the singleton set. QED

Proposition 5.5.8. Let κ ∈ ∆ ⊆fin CV. If α : A → Γ is u∆-small then so is
Iκ
Γ
α : Iκ

Γ
A→ Γ and if α is a code for α then

.̂κ ◦nextκV ∆ ◦α

is a code for Iκ
Γ
α. ♦

Proof. Let α be a code for α. Recall that Iκ preserves pullbacks and consider
the following diagram

Iκ
Γ
A IκA IκEV

∆
EV
∆

Γ Iκ Γ IκV ∆ V ∆

y
Iκ
Γ
α

y
Iκα

Iκα

y
Iκ u∆ u∆

nextκ
Γ Iκα .̂κ

where the left square is a pullback by definition of Iκ
Γ
, the middle square is

a pullback because Iκ preserves pullbacks and the right square is a pullback
by Lemma 5.5.7. Hence by the pullback pasting lemma the outer rectangle
is a pullback, and so by definition .̂κ ◦Iκα ◦ nextκ

Γ
is a code for Iκ

Γ
α. By

naturality of nextκ we have the equality

.̂κ ◦Iκα ◦nextκ
Γ

= .̂κ ◦nextκV ∆ ◦α

concluding the proof. QED

The universes are closed under ∀κ

The last new operation we have is ∀κ so we need to show that this also maps
small morphisms to small morphisms. However in contrast toIκ, the functor
∀κ changes the clock context and so correspondingly we need to relate small
maps in two different universes.

We start with a lemma about the universe el from Example 5.5.4.
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Lemma 5.5.9. Let P be a poset whose underlying set is in U. Let D1,D2 : P op→
Set be two diagrams and α : D1→ D2 a natural transformation. If αp is el-small
for all p ∈ P then

lim
p∈P

αp : lim
p∈P

D1(p)→ lim
p∈P

D2(p)

is el-small. ♦

Proof. Recall that the limit of a diagram in Set can be constructed as a set of
compatible families. Concretely limp∈P D1(p) is the seta ∈

∏
p∈P

D1(p)

∣∣∣∣∣∣∣∣ ∀p ∈ P ,q ≤ p,D1(q ≤ p)(ap) = aq


and analogously limp∈P D2(p). Let us write β for the function limp∈P αp. Con-
cretely it is defined as

β(a) = p 7→ αp(a(p)).

We need to show that for each a ∈ limp∈P D2(p), the fibre β−1(a) is isomorphic
to an element of U. By definition of β the fibre β−1(a) is a subset of the
product ∏

p∈P
α−1
p (a(p)).

Because for all p ∈ P the function αp is el-small each α−1
p (a(p)) is isomorphic

to some Ap ∈U. Hence
∏
p∈P α

−1
p (a(p)) is isomorphic to

∏
p∈P Ap and β−1(a) is

isomorphic to a subset of
∏
p∈P Ap. Because P ∈U the product

∏
p∈P Ap is also

in U. Because U is transitive and closed under power sets all of the subsets
of

∏
p∈P Ap are in U, hence in particular β−1(a) is isomorphic to an element

of U as needed. QED

Lemma 5.5.10. Let ∆ ⊆fin CV and κ a clock not in ∆. Let A,Γ ∈ GR (∆,κ) and
α : A → Γ a morphism. If α is small with respect to u∆,κ then the morphism
∀κ.α ∈GR (∆) is small with respect to u∆.

In particular there exists a morphism ∀ : ∀κ.V ∆,κ→ V ∆ making the following
diagram a pullback.

∀κ.EV
∆,κ EV

∆

∀κ.V ∆,κ V ∆

y
∀κ.u∆,κ u∆

∀

♦
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Proof. Recall that for any X ∈ GR (∆,κ) the diagram ∀κ.X at (E,δ) ∈ I (∆) is
defined to be the limit of the N

op indexed diagram

DX(n) = X(ι!n(E,δ)).

Analogously given a morphism f : X → Y we have for each (E,δ) ∈ I (∆) a
natural transformation Df :DX →DY defined as

D
f
n = fι!n(E,δ)

and by definition ∀κ.f is the morphism limn∈ND
f
n .

Hence, if α : A→ Γ is small then by Proposition 5.5.6 all of its components
are small so in particular all of the components of the natural transformation
Dα are small. By Lemma 5.5.9 we have (∀κ.α)E,δ small for each (E,δ), and so
again by Proposition 5.5.6 (but this time for the universe u∆ in GR (∆)) the
morphism ∀κ.α is small.

The last claim in the lemma now follows immediately from the fact that
u∆,κ is u∆,κ-small. QED

Proposition 5.5.11. Let ∆ ⊆fin CV, κ a clock not in ∆ and ι : ∆ → ∆,κ the
inclusion. Let Γ ∈ GR (∆), A ∈ GR (∆,κ) and α : A → ι∗(Γ ) a morphism, or,
equivalently, an object of GR (∆,κ) /ι∗(Γ ).

If α is small with respect to u∆,κ then ∀Γκ.α ∈GR (∆) /Γ is small with respect
to u∆. Moreover, if α is a code for α then ∀◦ (∀κ.α) ◦ ηΓ is a code for ∀Γ .α. ♦

Proof. Recall from Section 5.4 (page 198) that ∀Γκ.α is defined to be
(
ηΓ

)−1
◦

∀κ.α where η is the unit of the adjunction ι∗ a ∀κ.
Consider the following diagram

∀κ.A ∀κ.A ∀κ.EV
∆,κ EV

∆

Γ ∀κ.ι∗(Γ ) ∀κ.V ∆,κ V ∆

y
∀Γ κ.α

id

y
∀κ.α

y
∀κ.u∆,κ u∆

ηΓ ∀κ.α ∀

The right square is a pullback by Lemma 5.5.10 and the middle square is
a pullback by the assumption that α is a code for α and because ∀κ is a
right adjoint, so it preserves pullbacks. The left square is easily seen to be
a pullback, hence the outer rectangle is a pullback by the pullback pasting
lemma. QED

Preservation of universes by clock substitution

The functors GR (f ) do not in general preserve the universes we have de-
fined. More precisely by this we mean that it is not true in general that given
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f : ∆1 → ∆2 being f ∗
(
u∆1

)
-small is equivalent to being u∆2-small. Let us

see a concrete example. Recall that GR (∅) is isomorphic to the category Set
and GR (κ) is isomorphic to the topos of trees. The universe u∅ is therefore
(modulo the isomorphism between Set and GR (∅)) the universe el from Ex-
ample 5.5.4. Let ι : ∅ → {κ} be the inclusion and consider when an object
X ∈ GR (κ) is small with respect to ι∗(u∅). Recall that an object is small by
definition if the unique map X→ 1 fits into the pullback

X ι∗
(
EV∅

)

1 ι∗
(
V ∅

)ι∗(u∅)
X

for some X. If this is the case, it is easy to see that X must be isomorphic to
ι∗(Y ) for some Y ∈GR (∅).

On the other hand, Proposition 5.5.6 tells us that an object X of GR (κ) is
u{κ}-small precisely whenX(n) is isomorphic to an element of U for all n ∈N.
Since not all of these objects are of the form ι∗(Y ) the notion of smallness for
ι∗
(
u∅

)
and u{κ} are different.

This example contains the essence of the problem. If ∆1,∆2 ⊆fin CV are
disjoint, ∆2 is non-empty and ι : ∆1→ ∆1 ∪∆2 is the inclusion then an object
X ∈ GR (∆1 ∪∆2) is ι∗

(
u∆1

)
-small precisely when it is isomorphic to ι∗(Y ) for

some Y ∈GR (∆1), so inclusions do not preserve universes.
In contrast surjective clock subsitutions preserve universes as stated in the

following lemma.

Lemma 5.5.12. Let s : ∆→ ∆′ be a surjective function between clock contexts
∆ and ∆′. There exist isomorphisms cVs : s∗

(
V ∆

)
→ V ∆

′
and cEs : s∗

(
EV
∆

)
→ EV

∆′

such that the diagram

s∗
(
EV
∆

)
EV
∆′

s∗
(
V ∆

)
V ∆

′

cEs

s∗(u∆) u∆
′

cVs

commutes. In particular the diagram is a pullback.
Moreover, if t : ∆′′→ ∆ is also surjective then

cVs◦t = cs ◦ s∗(cVt ) (5.8)

and
cEs◦t = cs ◦ s∗(cEt ). (5.9)

♦
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Proof. From Lemma 5.2.4 we have I (s) injective and from Lemma 5.2.11 we
have that I (s) is a fibration. Thus I (s) restricted to a function ↓ (E,δ) →
↓I (s) (E,δ) is a bijection with an order preserving inverse given by the as-
signment u((E,δ),−).

Moreover, because the bijection is given by a restriction of a single func-
tion I (s) it is natural in (E,δ). We thus have

s∗(V ∆)(E,δ) = V ∆ (I (s) (E,δ)) = U
↓I(s)(E,δ)op

�U
↓ (E,δ)op

= V ∆
′
(E,δ)

where the bijection U
↓I(s)(E,δ)op

�U
↓ (E,δ)op

is natural in (E,δ). Thus s∗(V ∆) �
V ∆

′
as presheaves in GR (∆′). Concretely, then, we define cVs to be(

cVs
)

(E,δ)
(D) =D ◦ I (s)

and its inverse is (
cVs

)−1

(E,δ)
(D) =D ◦u((E,δ),−)

The map cE is defined analogously. Equalities (5.8) and (5.9) follow directly
from (contravariant) functoriality of I. QED

Remark 5.5.13. Inspection of the proof also shows why for inclusions ι : ∆→
∆,κ the reindexing ι∗ does not preserve universes in this way: the function
I (ι) restricted to ↓ (E,∆) → ↓I (ι) (E,δ) is not a bijection. This is consistent
with the situation as it was in Møgelberg’s previous model [71] and so fol-
lowing loc. cit. we add additional universes in each GR (∆). �

Definition 5.5.14. Let ∆′ ⊆ ∆ ⊆fin CV be clock contexts and ι : ∆′ → ∆ the
inclusion. We define the universe

u∆∆′ : E∆∆′ →U
∆
∆′

as
U∆∆′ = ι∗

(
V ∆

′)
E∆∆′ = ι∗

(
EV∆′

)
u∆∆′ = ι∗

(
u∆

′)
. �

Of course we need to justify calling u∆
∆′ a universe. This is not imme-

diate and relies on ι∗ being a locally cartesian closed functor preserving all
coproducts. To prove that u∆

∆′ are universes we will need some general facts
about universes in locally cartesian closed categories stated in the next two
lemmas.

Universes and generic operations Let C be a locally cartesian closed cate-
gory. Let el : E → U be a morphism in C. We characterise when the notion
of smallness induced by el is closed under composition and dependent prod-
ucts in the following two lemmas. To state the lemmas we need some prelim-
inary definitions. We return back to our specific model in Theorem 5.5.17 on
page 5.5.17 below.
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Let π1 :U ×U →U and el : E→U be two maps in the slice overU and let
p1 : U1→ U be the exponential el⇒ π1 over U . Using the internal language
we can describe U1 as the dependent sum

U1 =
∑
x:U

UEl(x).

Define E1 and p2 as the pullback

E1 E

U1 U

y
p2

w1

el

p1

Using the internal language we may describe E1 as the dependent sum

E1 =
∑
y:U1

El(π1(y))

Finally, define E2 and p3 as the pullback

E2 E

E1 U

y
p3

w2

el

e

where e : E1→U is defined as

e = π2 ◦ eval

where eval : p1×U el→ π1 is the evaluation map for the local exponential U1.
This makes sense because p2 is the product of of p1 and el in the slice over U .

Using the internal language E2 can be described as

E2 =
∑
z:E1

El ((π2(π1(z)))(π2(z)))

or using pattern-matching notation as

E2 =
∑

(x,G,y):E1

El (G(y))

Lemma 5.5.15. The morphism p2 ◦ p3 is U -small if and only if the notion of
smallness induced by el is closed under composition. ♦
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Proof. The morphisms p2 and p3 are small by definition and if smallness is
closed under composition then their composition is obviously small.

For the converse assume p2◦p3 is U -small and let f : B→ A and g : C→ B
be U -small witnessed by the codes f : A→U and g : B→U . Because

B E

A U

y
f

f

el

f

is a pullback we have f◦f = f×U el.
Define m : f×U el → π1 over U to be the morphism

〈
f◦f ,g

〉
. Hence we

can take its exponential transpose m̂ : f→ p1 over U . In particular we have
m̂ : A→U1. Now consider the diagram.

C E2 E

B E1

A U1 U

g

〈
〈m̂◦f ,f〉E1

◦g,g
〉
E2

p3

el

f

〈m̂◦f ,f〉E1

p2

m̂ p2◦p3

(5.10)

where
〈
〈m̂ ◦ f , f〉E1

◦ g,g
〉
E2

and 〈m̂ ◦ f , f〉E1
are the maps into the respective

pullbacks given by the universal property.
It is obvious that the lower left and the right squares are well-defined and

commute. To see that the upper left is well-defined observe that 〈m̂ ◦ f , f〉E1
is the product of maps m̂×U idel in the slice over U . Hence

e ◦ 〈m̂ ◦ f , f〉E1
= g◦g = el◦g

so all the morphisms are well-defined. The upper left square thus commutes
by definition.

Now observe that both

B E1 E

A U1 U

f

f

〈m̂◦f ,f〉E1

p2

w1

el

f

m̂ p1
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and

C E2 E

B E1 U

g

g

〈
〈m̂◦f ,f〉E1

◦g,g
〉
E2

p3

w2

el

g

〈m̂◦f ,f〉E1 e

commute and since the right and outer ones are pullbacks by assumption, so
is the left inner one. Hence by another application of the pullback lemma so
is the diagram (5.10) above, meaning that p2 ◦ p3◦m̂ is a code for f ◦g, so f ◦g
is small. QED

Lemma 5.5.16. The notion of smallness induced by el is closed under small de-
pendent products if and only if

∏
p2
p3 :

∏
p2
E2→U1 is small. ♦

Proof. If U is closed under small dependent products then
∏
p2
p3 is small

because p2 and p3 are small.
For the converse let f : B→ A and g : C→ B be small and let

C E2

B E1

A U1

g

〈
〈m̂◦f ,f〉E1

◦g,g
〉
E2

p3

f

〈m̂◦f ,f〉E1

p2

m̂

be the pullback (in particular the bottom square is a pullback) as in the proof
of Lemma 5.5.15 above.

Because the bottom square is a pullback we can use the Beck-Chevalley
property to get that the canonical natural transformation

can : m̂∗ ◦
∏
p2

→
∏
f

◦
(
〈m̂ ◦ f , f〉E1

)∗
is an isomorphism. In particular the component at p3 is an isomorphism

canp3
: m̂∗

∏
p2

(p3)

→∏
f

((
〈m̂ ◦ f , f〉E1

)∗
(p3)

)
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Now observe that
(
〈m̂ ◦ f , f〉E1

)∗
(p3) = g and so we have that the square

∏
f B

∏
p2
E2

A U1

∏
f g

∏
p2
p3

m̂

is also a pullback and so because
∏
p2
p3 is small, so is

∏
f g and this is wit-

nessed by a code
∏
p2
p3◦m̂. QED

The two lemmas lead to the following theorem.

Theorem 5.5.17. For any ∆′ ⊆ ∆ ⊆fin CV the morphism u∆
∆′ is a universe in

GR (∆) in the sense of Definition 5.5.2. ♦

Proof. Since 0, 1 and N are constant presheaves they are small with respect
to u∆

∆′ as discussed above.
To see that u∆

∆′ is closed under small dependent products we only need to
show (Lemma 5.5.16) that a particular dependent product is small.

Because u∆
′

is a universe (Definition 5.5.5) it is closed under small de-
pendent products. Hence defining p2 and p3 as on page 207 but using the
universe u∆

′
in GR (∆′) we have that

∏
p2
p3 is u∆

′
-small. Because ι∗ preserves

pullbacks and local exponentials (Theorem 5.2.13) the maps p′2 and p′3 con-
structed from u∆

∆′ are simply ι∗(p2) and ι∗(p3).
Because ι∗ preserves pullbacks the map ι∗

(∏
p2
p3

)
is u∆

∆′ -small. Because
ι∗ preserves dependent products (it is a locally cartesian closed functor, and
dependent products can be constructed from local exponentials), we have
ι∗
(∏

p2
p3

)
�

∏
ι∗(p2) ι

∗(p3) �
∏
p′2
p′3. Finally, being small is closed under isomor-

phisms, hence
∏
p′2
p′3 is u∆

∆′ -small, as needed.
The case for composition is entirely analogous. QED

Proposition 5.5.18. Let ∆′ ⊆ ∆ ⊆fin CV and κ ∈ ∆′. There is a morphism .̂κ :
IκU∆

∆′ →U
∆
∆′ making the following diagram a pullback.

Iκ E∆
∆′ E∆

∆′

IκU∆
∆′ U∆

∆′

y
Iκ u∆

∆′ u∆
∆′

.̂κ

As a consequence, if α : A→ Γ is u∆
∆′ -small with code α then Iκ

Γ
A is u∆

∆′ -small
with code

.̂κ ◦nextκU∆
∆′
◦α . ♦
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Proof. Lemma 5.5.7 provides a .̂κ : IκV ∆
′ → V ∆

′
making the following dia-

gram a pullback.

IκEV
∆′ EV

∆′

IκV ∆
′

V ∆
′

y
Iκ u∆

′
u∆
′

.̂κ

Because ι∗ :GR (∆′)→GR (∆) preserves pullbacks the diagram

ι∗
(
IκEV

∆′

)
ι∗
(
EV
∆′

)

ι∗
(
IκV ∆

′)
ι∗
(
V ∆

′)
y

ι∗
(
Iκ u∆

′ )
u∆
′

∆′

ι∗ (̂.κ)

is also a pullback. By Proposition 5.3.5 we have, e.g.,

ι∗
(
Iκ u∆

′)
= Iκu∆∆′

hence defining the new .̂κ to be ι∗(̂.κ) proves the first part of the proposition.
The second part follows analogously from Proposition 5.5.8. QED

Proposition 5.5.19. Let ∆′ ⊆ ∆ ⊆fin CV and κ a clock not in ∆. Let A,Γ ∈
GR (∆,κ) and α : A→ Γ a morphism. If α is small with respect to u∆,κ

∆′ ,κ then the
morphism ∀κ.α ∈GR (∆) is small with respect to U∆

∆′ .
In particular there exists a morphism ∀ : ∀κ.U∆,κ

∆′ ,κ→U
∆
∆′ making the following

diagram a pullback.

∀κ.E∆,κ
∆′ ,κ E∆

∆′

∀κ.U∆,κ
∆′ ,κ U∆

∆′

y
∀κ.u∆,κ

∆′ ,κ u∆
∆′

∀

Let υ : ∆→ ∆,κ be the inclusion, Γ ∈GR (∆), A ∈GR (∆,κ) and α : A→ ι∗(Γ )
a morphism.

If α is small with respect to U∆,κ
∆′ ,κ then ∀Γκ.α ∈GR (∆) /Γ is small with respect

to U∆
∆′ . Moreover, if α is a code for α then ∀◦ (∀κ.α) ◦ ηΓ is a code for ∀Γ .α. ♦

Proof. From Lemma 5.5.10 we have that the diagram

∀κ.EV
∆′ ,κ EV

∆′

∀κ.V ∆′ ,κ V ∆
′

y
∀κ.u∆′ ,κ u∆

′

∀
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is a pullback. Let ι : ∆′ → ∆ be the inclusion. Because ι∗ preserves pullbacks
the following square is likewise a pullback.

∀κ.ι∗
(
EV
∆′ ,κ

)
ι∗
(
EV
∆′

)

ι∗
(
∀κ.V ∆′ ,κ

)
ι∗
(
V ∆

′)
y

ι∗
(
∀κ.u∆′ ,κ

)
ι∗
(
u∆
′ )

ι∗(∀)

By the Beck-Chevalley condition for ∀κ (Proposition 5.4.4) we have, e.g.,

ι∗
(
∀κ.u∆

′ ,κ
)

= ∀κ.ι′∗
(
u∆

′ ,κ
)

where ι′ : ∆′ ,κ→ ∆,κ is the inclusion. By definition ι′∗
(
u∆

′ ,κ
)

= U∆,κ
∆′ ,κ. Hence

defining the new ∀ as ι∗(∀) proves the first part of the proposition.
The second part follows analogously from Proposition 5.5.11 together

with Propositions 5.4.4 and 5.4.5. QED

Finally, these additional universes are preserved by clock substitution in
the appropriate way.

Proposition 5.5.20. Let f : ∆1 → ∆2 be a function between clock contexts ∆1

and ∆2. Let ∆′ ⊆ ∆1 be another clock context and u∆1
∆′ : E∆1

∆′ → U
∆1
∆′ the universe

in GR (∆1) from Definition 5.5.14. There exist two natural isomorphisms cf ,∆
′

E

and cf ,∆
′

V such that the diagram Recall that f [∆′] is the
image of the set ∆′ under
the function f .

f ∗
(
E∆1
∆′

)
E∆2
f [∆′]

f ∗
(
U∆1
∆′

)
U∆2
f [∆′]

f ∗
(
u
∆1
∆′

)
c
f ,∆′
E

u
∆2
f [∆′ ]

c
f ,∆′
V

commutes. In particular, f ∗
(
U∆1
∆′

)
� U∆2

f [∆′].
Moreover, for any g : ∆2→ ∆3 we have

c
g,f [∆′]
V ◦ g∗

(
c
f ,∆′

V

)
= cg◦f ,∆

′

V (5.11)

and

c
g,f [∆′]
E ◦ g∗

(
c
f ,∆′

E

)
= cg◦f ,∆

′

E . (5.12)
♦
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Proof. Let ι1 be the inclusion of ∆′ into ∆1 and ι2 the inclusion of f [∆′] into
∆2. Let s : ∆′ → f [∆′] be the restriction of f . By definition s is surjective and
f ◦ ι1 = ι2 ◦ s and so f ∗ ◦ ι∗1 = ι∗2 ◦ s∗. Lemma 5.5.12 gives natural isomorphisms
cVs and cEs such that the diagram on the left

s∗
(
EV
∆′

)
EVf [∆′]

s∗
(
V ∆

′)
V f [∆′]

cEs

s∗
(
u∆
′ )

uf [∆′ ]

cVs

ι∗2
(
s∗

(
EV
∆′

))
ι∗2

(
EVf [∆′]

)

ι∗2
(
s∗

(
V ∆

′))
ι∗2

(
V f [∆′]

)

ι∗2(cEs )

ι∗2
(
s∗
(
u∆
′ ))

ι∗2
(
uf [∆′ ]

)
ι∗2(cVs )

commutes. Hence the diagram on the right commutes and the horizontal
morphisms are isomorphisms. But notice that, e.g.,

ι∗2
(
s∗

(
V ∆

′))
= f ∗

(
ι∗1

(
V ∆

′))
= f ∗

(
U∆1
∆′

)
and by definition ι∗2

(
V f [∆′]

)
= U∆2

f [∆′]. This proves the first part.
The equalities (5.11) and (5.12) follow directly from equalities(5.8) and

(5.9) from Lemma 5.5.12. QED

Remark 5.5.21. The preceding proposition shows in particular that there is a
universe which is preserved by clock substitution. This is the universe U ∅∅ . It
is preserved in the sense that we could define in each categoryGR (∆) a single
universe U∆∅ and these universes would be preserved by clock substitution.
In fact, they would even be preserved on the nose.

A question might then appear as to why we need more universes? The an-
swer is that the universes U∆∅ are not closed under Iκ (in the sense of Propo-
sition 5.5.18). Closure under Iκ is however crucial for defining types as fixed
points on universes as explained in [18]. �

Universe inclusions

The final question is how the universes u∆
∆′ and u∆

∆′′ are related. The answer
is in the following proposition.

Proposition 5.5.22. Let ∆′′ ⊆ ∆ ⊆fin CV be two clock contexts. There is a
monomorphism

in∆∆′′ ,∆′ : U∆∆′′ →U
∆
∆′

that fits into the following pullback square.

E∆
∆′′ E∆

∆′

U∆
∆′′ U∆

∆′

y
u∆
∆′′ u∆

∆′

in∆
∆′′ ,∆′
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If ∆′′′ ⊆ ∆′′ is a further clock context then also

in∆∆′′′ ,∆′ = in∆∆′′ ,∆′ ◦ in
∆
∆′′′ ,∆′′ . (5.13)

Finally if ∆1 ⊆fin CV and f : ∆→ ∆1 is any function then the following diagram
commutes.

f ∗
(
U∆
∆′′

)
f ∗

(
U∆
∆′

)

U∆1
f [∆′′] U∆1

f [∆′]

c
f ,∆′′
V

f ∗
(
in∆
∆′′ ,∆′

)

c
f ,∆′
V

in
∆1
f [∆′′ ],f [∆′ ]

(5.14)
♦

Proof. Since the components of u∆
′

∆′′ ∈ GR (∆′) are the components of u∆
′′ ∈

GR (∆′′) we have that all components of u∆
′

∆′′ are el-small for the universe el
from Example 5.5.4. Hence by Proposition 5.5.6 there is a morphism in∆

′

∆′′ ,∆′ :

U∆′
∆′′ → U

∆′

∆′ = V ∆
′
. Define in∆

∆′′ ,∆′ to be ι∗
(
in∆

′

∆′′ ,∆′

)
where ι : ∆′ → ∆ is the

inclusion.
This argument shows that such a morphism exists, however to verify that

it is a monomorphism and that (5.13) and (5.14) hold we need a more useful
description. The morphism in∆

∆′′ ,∆′ is defined to be(
in∆∆′′ ,∆′

)
E,δ

(D)(E′ ,δ′) =D
(
I
(
ι∆
′

∆′′

)
(E′ ,δ′)

)
where I

(
ι∆
′

∆′′

)
: ∆′′→ ∆′ is the inclusion.

Using this description (5.13) and (5.14) are easy to verify by direct com-
putation. The fact that it is a monomorphism follows from the fact that I

(
ι∆
′

∆′′

)
is surjective (Lemma 5.2.5). QED

Using this proposition we have, for instance, that if f is a u∆
∆′′ code for a

map f : A→ Γ then in∆
∆′′ ,∆′ ◦ f is a u∆

∆′ code for f . This follows directly from
the pullback pasting lemma.

5.6 Discussion

We have constructed an indexed category GR. For each ∆ ⊆fin CV the cate-
gory GR (∆) supports a model of extensional dependent type theory and for
each function f : ∆1→ ∆2 the functor GR (f ) preserves the structure needed
to model dependent type theory. The indexed category can thus be made into
an instance of a PDTT-structure (5.2) (on page 183). However it is not a split
PDTT-structure. We now discuss what are the problems with splitting.

Since each GR (∆) is a presheaf topos there are known constructions ([48,
51, 77]) for makingGR (∆) a split closed comprehension category, with strong
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sums and strong identity types [51], i.e., a model of extensional dependent
type theory.

The source of problems is clock weakening. The first indication of this
appears in Lemma 5.5.12 and the remark following it which force us to add
more universes in each GR (∆) and universe inclusions (Proposition 5.5.22).
A desirable property of universe inclusions is that they commute with all the
structure on the nose. For instance, if

→̂∆′′ : U∆∆′′ ×U
∆
∆′′ →U

∆
∆′′

is the chosen code (recall that to have a split PDTT-structure means in par-
ticular to make a choice of all structure) for the exponential operation in the
universe U∆

∆′′ and →̂∆′ is the chosen code for the exponential operation in U∆
∆′

then we would want to have the equality of codes

→̂∆′ ◦
〈
in∆∆′′ ,∆′ ◦ f, in∆∆′′ ,∆′ ◦ g

〉
= in∆∆′′ ,∆′ ◦ →̂∆′′ ◦

〈
f,g

〉
for chosen codes f and g of maps f and g, respectively. At present we do not
know how to make this choice.

Similarly, we do not know how to make a choice of dependent products
in GR (∆) in such a way that they would be preserved on the nose by clock
substitution f ∗.

The essence of all the problems is that exponentials (and dependent prod-
ucts) in presheaf categories are constructed using “Kripke” quantification
which means that they reflect the indexing category that is used. Hence
changing the indexing category, as for example when when moving from
GR (∆1) toGR (∆2), means that the natural choice of exponentials in presheaf
categories is very rarely preserved on the nose. We are working with quite
specific presheaf categories though, so perhaps the categories can be pre-
sented in a better way or alternatively the exponentials and dependent prod-
ucts could be constructed in a different way.

We believe this is a technical, rather than essential, problem with the par-
ticular presentation. In particular, without universes, there is a solution to
the coherence problem by replacing the categories GR (∆) by equivalent ones
obtained by the Bénabou construction [16] (see also [51, Corollary 5.2.5]) ap-
plied to the (fibration obtained from the) indexed category GR. This then
allows us to make choices of structure that are preserved on the nose by
functors interpreting clock substitution.

In related work, the model in Chapter 6 is a split PDTT-structure by con-
struction obtained in a substantially simpler way. The reason that clock sub-
stitution preserves all the structure on the nose is precisely that, for instance,
exponentials do not reflect directly the indexing poset used. Instead, the
exponential is a set of functions satisfying some property and since clock sub-
stitution does not change the underlying sets, but only the property imposed
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by the indexing poset, it preserves the exponential, since it preserves the
property. For technical details on how this works see Chapter 6.





Chapter 6

A Model of Guarded Recursion
via Generalised Equilogical
Spaces

This chapter is a slightly revised version of

Aleš Bizjak and Lars Birkedal.

A model of guarded recursion via generalised equilogical spaces.

???, 2015.

Under review

which is currently under review.

Abstract

We present a new model, called GuardedEqu, of guarded dependent
type theory using generalised equilogical spaces. GuardedEqu models
guarded recursive types, which can be used to program with coinduc-
tive types and we prove that GuardedEqu ensures that all definable
functions on coinductive types, e.g., streams, are continuous with re-
spect to the natural topology. We present a direct, elementary, con-
struction of the new model, which, importantly, is coherent (split) by
construction.

6.1 Introduction

Type theories with support for guarded recursive functions and guarded re-
cursive types are useful for programming with coinductive types and also for
serving as a meta-theory for constructing sophisticated models of program-
ming languages with effects [22, 91].

219
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In this paper, we present a new model of guarded dependent type theory,
based on a generalisation of equilogical spaces [14]. We refer to the new
model as GuardedEqu.

In contrast to earlier models of guarded dependent type theory, Guarded-
Equ ensures that definable functions on coinductive types are suitably con-
tinuous. For example, any function definable on the type of streams is con-
tinuous with respect to the standard topology on streams. Thus, if f is such
a function on streams and xs is a stream, a finite amount of the output f (xs)
only depends on a finite amount of the input xs. We prove that an analogous
result holds for final coalgebras of arbitrary polynomial functors.

It is well-known that models of dependent type theory can be tricky to
construct. A virtue of GuardedEqu is that the model construction is quite
elementary and can be presented via a simple generalisation of constructions
known from realizability models of type theory. An important feature of
GuardedEqu is that it is coherent (split) by construction. A limitation of the
model is that it does not include universes.

We now explain how GuardedEqu is related to earlier models of variations
of guarded type theory.

Originally a type theory with a single I modality for expressing guard-
edness was modelled using the category PSh (ω), the topos of trees [22]. The
model and the type theory allows for the solution of guarded recursive do-
main equations. It was later realised that guarded recursion can also be used
for ensuring that functions producing values of coinductive types are pro-
ductive in a precise sense. To support such encodings the type theory needs
to be extended with the ability to eliminate I in a controlled way. This led
Atkey and McBride [11] to generalise I to a family of modalities indexed by
clocks, and to support clock quantification for controlled elimination of I.
Atkey and McBride’s development was for a simply typed calculus. They de-
veloped a model of their type theory and showed that, e.g., all streams defin-
able in the calculus were were interpreted as actual streams, i.e., non bottom
elements. Møgelberg [71] extended their work to a model of dependent type
theory with universes. This model was subsequently refined [28] to support
clock synchronisation which considerably simplified the calculus. As it cur-
rently stands this model is complex, in particular in its split form which is
needed to soundly model the rules of guarded dependent type theory [27].

GuardedEqu can be seen as a generalisation of the model by Atkey and
McBride to dependent types. The type theory we are considering has, to
be useful, certain type isomorphisms [11, 71]. An example is the type iso-
morphism ∀κ.N � N, where N is the type of natural numbers. In Atkey
and McBride’s model these were type equalities, but in the presheaf models
of guarded dependent type theory [28, 71] the types ∀κ.N and N are only
modelled as canonically1 isomorphic types. In GuardedEqu these type iso-

1Canonical means there is a term definable using just the ordinary introduction rules for



6.2. Guarded Dependent Type Theory 221

morphisms are again type equalities. This generalises the results of Atkey
and McBride to a dependent type theory.

6.2 Guarded Dependent Type Theory

In this section we give a very brief introduction to the syntax of guarded
dependent type theory. We refer the reader to [27] for the full set of typing
rules, their motivation and more detailed explanation.

Guarded dependent type theory can be seen as a version of polymorphic
dependent type theory [51]. It includes two contexts. A context ∆ of clock
variables κ,κ′ , · · · and a context Γ of ordinary term variables. Types depend
on clocks, that is, clocks can appear in types, but clocks are only names in
the sense that there are no constructions on clocks themselves. Guarded de-
pendent type theory has the following basic judgements.

Γ `∆
Γ `∆ A type

Γ `∆ t : A

The judgement Γ `∆ expresses that the free clocks in Γ are contained in ∆,
the judgement Γ `∆ A type expresses that A is a well-formed type in context
Γ `∆ and the last judgement expresses that t has type A in context Γ `∆. As
usual in dependent type theory, there are also judgements for type and term
equality for which we refer to [27]. Clocks are used to distinguish different
I modalities. Thus, for each clock there is a modality Iκ and a term nextκ

with the typing judgement

Γ `∆ t : A
Γ `∆ nextκ t : IκA

κ ∈ ∆

Clock weakening is admissible, e.g., there is a derivation of

Γ `∆ A type
Γ `∆,κ A type

for κ < ∆ and analogously for other judgements. Clock weakening has a right
adjoint, which we write as ∀κ. The introduction rule is

Γ `∆ Γ `∆,κ t : A
Γ `∆ Λκ.t : ∀κ.A

with the usual elimination rule for products and β-η rules for judgemental
equalities. Thus in the model we shall need to have polymorphic products of
kinds over types [51, Chapter 11].

∀κ of type N→∀κ.N and the denotation of this term is an isomorphism.



222 A Model of Guarded Recursion via Generalised Equilogical Spaces

A profitable way of thinking about guarded dependent type theory (and
polymorphic dependent type theory in general) is as follows.

For each clock context ∆ we have a core dependent type theory with or-
dinary type formers Π, Σ and equality types. In Section 6.3 we show how to
model this fragment by constructing categories PEqu(P ) and associated split
closed comprehension categories with strong coproducts and strong equality.
The construction is parametrised by a partially ordered set P . For the model
of the core fragment it does not matter what P is. Later on, in Section 6.3,
we instantiate P with specific posets which allow us to model the I modal-
ity and clock quantification ∀κ. Different clock contexts ∆ will give rise to
different posets P .

Next, to be able to change clock contexts, e.g., to interpret weakening,
we need to be able to move between categories PEqu(P ) for different P . Sec-
tion 6.3 provides the necessary results which ensure that moving between
PEqu(P ) and PEqu(Q) preserves all the structure, e.g., products, coproducts.
Section 6.3 then ties it all together into one model of guarded dependent type
theory with two-level indexing. One for clock contexts and one for ordinary
contexts. Section 6.3 provides a high-level summary of the model construc-
tion in the framework of fibrations. In Section 6.4 we prove how final coal-
gebras for polynomial functors can be obtained via guarded recursive types.
And we prove the continuity properties for functions on final coalgebras for
polynomial functors mentioned in the Introduction.

GuardedEqu validates all the rules of guarded dependent type theory
apart from universes. We do not show soundness of all the rules in this article
but only show the main constructions needed. Using these constructions the
verification of all the rules is quite straightforward, albeit somewhat tedious
to write out in all detail.

Remark 6.2.1. In the most recent formulation of guarded dependent type
theory [27], guarded recursive types are defined via fixed points of functions
on universes. Since we do not model universes in GuardedEqu, we would
need some other facility for defining guarded recursive types syntactically,
such as the one used in [22]. Formulating and modeling such guarded re-
cursive types can be done without too much trouble, following [22].2 Here,
however, we do not include such a treatment, since that would not be partic-
ularly interesting, given all the other material. Instead we show in Section 6.4
that we can construct final coalgebras of polynomial functors using solutions
of guarded type equations and we show that the solution comes equipped

2Indeed it is easy to show that PEqu(P ) is enriched in the category of presheaves over P ,
which is equivalent to the category of sheaves over P equipped with the Alexandrov topology,
so fits into the general framework [22] for a well-founded order P . Further, it is easy to see
that the usual type constructors, →, ×, + give rise to enriched functors, and thus one can
prove an existence theorem for fixed points of contractive functors following [22].



6.3. GuardedEqu 223

with the correct topology, which allows us to show expected productivity
properties of functions defined on final coalgebras. �

6.3 GuardedEqu

Modelling core dependent type theory

First we explain some general constructions which do not deal directly with
guarded recursion but are used later on. Let P be a partially ordered set. The
category PEqu(P ) has as objects pairs A = (|A| ,RA) where

• |A| is an algebraic lattice, i.e., a complete lattice where every element is
the supremum of compact elements below it

• RA is a monotone map from P op to PERs on |A| ordered by subset inclu-
sion. In other words, RA is a family of partial equivalence relations on
|A| indexed by P such that if p ≤ q then RA(p) ⊇ RA(q).

We will sometimes write a ≈pA a
′ for (a,a′) ∈ RA(p).

Morphisms from A to B in PEqu(P ) are equivalence classes, with respect
to the relation ∼ defined below, of continuous non-expansive maps |A| → |B|
(i.e., morphisms in AlgLat). The function f is non-expansive if it satisfies for
all p ∈ P the property

∀(a,a′) ∈ RA(p), (f (a), f (a′)) ∈ RB(p).

The equivalence relation ∼ is defined as

f ∼ g↔∀p ∈ P ,∀(a,a′) ∈ RA(p), (f (a), g(a′)) ∈ RB(p).

Note that ∼ is an equivalence relation on non-expansive maps, but only a
partial equivalence relation on general continuous maps. Indeed, if we define
the relation ∼ on all maps then the non-expansive ones are precisely the ones
in the domain of ∼.

This makes PEqu(P ) into a category. Identities are given by equivalence
classes of the identity functions in AlgLat. Composition of [f ] : A→ B and
[g] : B→ C is given by the equivalence class of f ◦g. It can easily be seen that
this definition is independent of the choice of representatives f and g.

Remark 6.3.1. If P is the unique poset with one element then PEqu(P ) is
the category of partial equilogical spaces [14], equivalent to the category of
equilogical spaces. �

To interpret dependent types we present the slice categories in a differ-
ent way, similar to uniform families [51] but incorporating the monotonicity
requirement.



224 A Model of Guarded Recursion via Generalised Equilogical Spaces

Analogous to the way that the slice category PSh (C) /Γ of the category
of presheaves PSh (C) over some presheaf Γ is equivalent to the category of
presheaves over the category of elements of Γ we will present the slice cate-
gories of PEqu(P ) using an auxiliary poset

∫
P
Γ . We now define this poset.

Let Γ ∈ PEqu(P ). The poset
∫
P
Γ has as elements pairs

(
p, [γ]p

)
where p ∈ P

and [γ]p is an equivalence class of γ ∈ |Γ | with respect to the relation RΓ (p).
In particular this means (γ,γ) ∈ RΓ (p). We define the order ≤ on

∫
P
Γ as

(p,c) ≤ (q,c′) if and only if p ≤ q and c ⊇ c′. Or equivalently (p, [γ]p) ≤ (q, [γ ′]q)
if p ≤ q and (γ,γ ′) ∈ RΓ (p).

Lemma 6.3.2. The set
∫
P
Γ with the order relation ≤ defined above is a poset. ♦

Note that in contrast to the situation with presheaves, it is not the case
that the category PEqu(P )/Γ is equivalent to the category PEqu(

∫
P
Γ ). The

problem is that the latter category has too few morphisms. However its ob-
jects are precisely the ones needed. To get a category equivalent to the slice
category we define a new category TypeP (Γ ).3 Its objects are the objects of
PEqu(

∫
P
Γ ). A morphism from A to B is an equivalence class of continuous

functions |Γ | → |A| → |B| in AlgLat with respect to the partial equivalence
relation ∼Γ which relates f and f ′ if and only if

∀p ∈ P ,∀(γ,γ ′) ∈ RΓ (p),∀(a,a′) ∈ RA(p, [γ]p), (f γa,gγ ′a′) ∈ RB(p, [γ]p).

As before such a function f is called non-expansive if f ∼Γ f , i.e., if f is in the
domain of ∼Γ . Identity at the object A is given by the equivalence class of the
second projection and composition of [f ] : A→ B and [g] : B→ C is given by
the equivalence class of the continuous function

γ 7→ a 7→ gγ(f γa).

Remark 6.3.3. Comparing to the situation with presheaves again, the mor-
phisms in TypeP (Γ ) have access to an additional parameter Γ (as compared
to the morphisms in PEqu(

∫
P
Γ )). The reason this is not needed with presheaf

categories is that natural transformations are indexed families of functions
(satisfying coherence conditions) and elements of Γ are part of the index-
ing poset. So in essence, the additional parameter Γ is already built into the
definition of the category of presheaves over the category of elements. �

Theorem 6.3.4. For any poset P and Γ ∈ PEqu(P ) the category TypeP (Γ ) is equiv-
alent to the slice category PEqu(P )/Γ . ♦

Proof. We define two functors F : TypeP (Γ )→ PEqu(P )/Γ and G in the con-
verse direction. The functor F maps

3We use the notation TypeP (Γ ) because this category will be used to interpret dependent
types in context Γ .
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• the object A to the object πA : Γ nA→ Γ where

|Γ nA| = |Γ | × |A|

RΓnA(p) =
{
((γ,a), (γ ′ , a′))

∣∣∣ (γ,γ ′) ∈ RΓ (p)∧ (a,a′) ∈ RA(p, [γ]p)
}
.

and πA is the equivalence class of the first projection |Γ | × |A| → |Γ |.

• the morphism [f ] to the equivalence class of the morphism

(γ,a) 7→ (γ,f γa)

The definition of the equivalence relation ∼Γ is precisely what is needed
to show that such a definition is independent of the choice of represen-
tative f .

The functor G maps

• an object [f ] : A → Γ of the slice category to the object f −1(A) of the
category TypeP (Γ ) where∣∣∣f −1(A)

∣∣∣ = |A|

Rf −1(A)

(
p, [γ]p

)
=

{
(a,a′)

∣∣∣ (a,a′) ∈ RA(p)∧ (f (a),γ) ∈ RΓ (p)
}
.

• a morphism [α] : [f ] → [g] to the equivalence class of the continuous
function

γ 7→ a 7→ αa

Finally we define two natural isomorphisms η : id → F ◦G and ε : id →
G ◦F.

A Γ n f −1(A)

Γ

[f ]

ηf

πf −1(A)

Define ηf to be the equivalence class of the continuous function

a 7→ (f (a), a).

Its inverse is the equivalence class of the second projection π2 : |Γ | × |A| → |A|.
The component of ε and A is given by the equivalence class of

γ 7→ a 7→ (γ,a).

Its inverse is given by the equivalence class of the continuous function

γ 7→ (γ ′ , a) 7→ a.

Checking that these are well-defined and that they satisfy the claimed prop-
erties is straightforward, albeit somewhat lengthy, unpacking of definitions.

QED



226 A Model of Guarded Recursion via Generalised Equilogical Spaces

Reindexing

Given a morphism [f ] : Γ1→ Γ2 in PEqu(P ) there is a functor f ∗ : TypeP (Γ2)→
TypeP (Γ1) defined by “precomposition”. Given an object A ∈ TypeP (Γ2) the
object f ∗(A) is

|f ∗(A)| = |A|

Rf ∗(A)

(
p, [γ]p

)
= RA

(
p, [f (γ)]p

)
.

The functor f ∗ maps a morphism realised by g to the morphism realised by
g ◦ f . More concretely, a morphism [g] is by definition realised by a contin-
uous function g : |Γ2| → |A| → |B|. The morphism f ∗([g]) is realised by the
function of type |Γ1| → |A| → |B|mapping γ and a to g(f γ)a.

Lemma 6.3.5. The operation f ∗ we have defined is well-defined, i.e., independent
of the choice of representative f , and it is a functor. ♦

Moreover this construction shows that we have a functor from the op-
posite of the category PEqu(P ) to the category of categories which maps Γ to
TypeP (Γ ) and [f ] to the functor f ∗. So we may use the Grothendieck construc-
tion to get a fibration p : UFam(P )→ PEqu(P ). Concretely, the objects of the
total category UFam(P ) are pairs (Γ ,A) where Γ ∈ PEqu(P ) and A ∈ TypeP (Γ ).
Morphisms (Γ1,A1)→ (Γ2,A2) are pairs ([f ], [g]) where [f ] : Γ1 → Γ2 is a mor-
phism in PEqu(P ) and [g] is an equivalence class of continuous functions
|Γ1| → |A1| → |A2| with respect to the relation ∼A1,A2

which relates g and g ′ if
and only if

∀p ∈ P ,∀(γ,γ ′) ∈ RΓ1(p),∀(a,a′) ∈ RA1
(p, [γ]p), (gγa,g ′γ ′a′) ∈ RA2

(p, [f (γ)]p).

Since the assignment f 7→ f ∗ is a functor the fibration p, which simply
projects the first components, is a cloven split fibration. The chosen cartesian
lifting of [f ] : Γ1→ p (Γ2,A) is

([f ], [γ 7→ a 7→ a]) : (Γ1, f
∗(A))→ (Γ2,A)

The functor F defined in the proof of Theorem 6.3.4 can be extended
to a comprehension category. Indeed, define the functor P : UFam(P ) →
PEqu(P )→ as

P (Γ ,A) = πA
P ([f ], [g]) = ([f ], [(γ,a) 7→ (f γ,gγa)])

as depicted in the following diagram

Γ1 nA1 Γ2 nA2

Γ1 Γ2

πA1

[(γ,a)7→(f (γ),gγa)]

πA2

[f ]
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Theorem 6.3.6. The diagram

UFam(P ) PEqu(P )→

PEqu(P )

p

P

cod

commutes and p is a full split comprehension category with unit. The terminal
object functor 1 : PEqu(P )→ UFam(P ) maps Γ to the object (Γ ,1) where

|1| = 2∅

R1(p) = 2∅ × 2∅

and 2∅ is the power set of the empty set. ♦

Below we will extensively use the fact that the fibre over an object Γ
with respect to the fibration p is isomorphic in a trivial way to the category
TypeP (Γ ). This reduces clutter because we do not have to carry around the
first components of objects of the fibre which do not matter, since they are
uniquely determined (up to equality).

Dependent products

Theorem 6.3.7. The comprehension category p has (split) products satisfying
(split) Beck-Chevalley condition. ♦

Proof. Let πA = P (Γ ,A) : Γ nA→ Γ be a projection. It induces a functor π6A
from the slice over Γ to the slice over Γ n A which we need to show has a
right adjoint. Representing slices using the categories TypeP (−) the func-
tor π6A is simply π∗A. Thus, given an object B ∈ TypeP (Γ nA) define the ob-
ject Π(A,B) ∈ TypeP (Γ ) to have the underlying lattice |Π(A,B)| the lattice of
continuous functions |A| → |B|. The family of relations RΠ(A,B) is defined at
(p, [γ]p) to be{

(f , f ′)
∣∣∣∣ ∀q ≤ p,∀(a,a′) ∈ RA(q, [γ]q), (f (a), f ′(a′)) ∈ RB

(
q, [(γ,a)]q

)}
.

To show that we get a right adjoint to π∗A we show that we have a universal
morphism

apA,B : π∗A (Π(A,B))→ B

in TypeP (Γ nA). We define apA,B to be the equivalence class of the morphism

(γ,a) 7→ f 7→ f a.
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Note that the relation RΠ(A,B) states precisely what is needed to show that the
function we have defined is non-expansive.

To show that apA,B is universal we show that for any C and any morphism
[ϕ] : π∗A(C)→ B there is a unique morphism cur (ϕ) : C→Π(A,B) in TypeP (Γ )
making the following diagram commute.

π∗A(C) π∗A(Π(A,B))

B

π∗A(cur(ϕ))

[ϕ]
apA,B

Define cur (ϕ) to be the equivalence class of the function

γ 7→ c 7→ (a 7→ ϕ(γ,a)c)

of type |Γ | → |C| → (|A| → |B|), recalling that [ϕ] is realised by the function ϕ
of type |Γ | × |A| → |C| → |B|.

Checking that all the stated properties hold is straightforward unpacking
of definitions.

Finally, the Beck-Chevalley condition can be verified to hold by simple
computations. QED

Dependent sums

Theorem 6.3.8. The comprehension category p has (split) strong coproducts sat-
isfying (split) Beck-Chevalley condition. ♦

Proof. As in the proof of Theorem 6.3.7 given an object B ∈ TypeP (Γ nA) de-
fine an object Σ(A,B) ∈ TypeP (Γ ) as follows. The underlying lattice |Σ(A,B)| is
the lattice |A| × |B|. The family of relations RΣ(A,B) is defined at (p, [γ]p) to be{

((a,b), (a′ ,b′))
∣∣∣∣ (a,a′) ∈ RA(p, [γ]p), (b,b′) ∈ RB

(
p, [(γ,a)]p

)}
.

This definition comes with a morphism pairA,B : B→ π∗A (Σ(A,B)) in the fibre
over Γ n A which we define to be the equivalence class of the continuous
function

(γ,a) 7→ b 7→ (a,b).

This morphism satisfies the property that for any C and any [ϕ] : B→ π∗A(C)
there exists a unique morphism unpack (ϕ) : Σ(A,B)→ C satisfying

π∗A(unpack (ϕ)) ◦ pairA,B = [ϕ].
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Indeed, the morphism unpack (ϕ) is defined as the equivalence class of the
continuous function

γ 7→ (a,b) 7→ ϕ(γ,a)b.

All of the claimed properties are easy and straightforward to check.
With these definitions the assignment B 7→ Σ(A,B) extends to a functor

left adjoint to π∗A. Concretely it maps a morphism [ϕ] : B→ C to the equiva-
lence class of the continuous function

γ 7→ (a,b) 7→ (a,ϕ(γ,a)b).

Recall the domain functor dom : PEqu(P )→ → PEqu(P ). A comprehension
category has strong coproducts [51, Definition 10.5.2] if the morphism

dom
(
P (πA,pairA,B)

)
is an isomorphism. In our case this follows by computation. Indeed, the mor-
phism dom

(
P (πA,pairA,B)

)
is the equivalence class of the continuous function

((γ,a),b) 7→ (γ, (a,b)). QED

Equality

Theorem 6.3.9. The fibration p has strong equality. ♦

Proof. For any Γ and any A ∈ TypeP (Γ ) there is a morphism in PEqu(P )

δA : Γ nA→ Γ nAnπ∗A(A)

which is the equivalence class of the continuous function (γ,a) 7→ ((γ,a), a).
Recall that a comprehension category has weak equality if δ6A has a left

adjoint EqA for any A and these left adjoints satisfy the Beck-Chevalley con-
dition.

Let us define EqA : TypeP (Γ nA) → TypeP
(
Γ nAnπ∗A(A)

)
. We proceed

as we did in Theorem 6.3.8, by constructing an object EqA(B) and a univer-
sal morphism. Given B ∈ TypeP (Γ nA) define EqA(B) to have the underlying
lattice |EqAB| the lattice |B| and the family of relations REqA(B) is defined at
(p, [((γ,a), a′)]) to be{

(b,b′)
∣∣∣ (b,b′) ∈ RB(p, [(γ,a)]), (a,a′) ∈ RA(p, [γ])

}
=

RB(p, [(γ,a)]) if (a,a′) ∈ RA(p, [γ])

∅ otherwise

There is a morphism reflA,B : B→ δ∗A(EqAB) which is the equivalence class of
the continuous function

(γ,a) 7→ b 7→ b.
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This pair satisfies the universal property stating that for any C and any [ϕ] :
B→ δ∗A(C) there exists a unique morphism with (ϕ) : EqA(B)→ C satisfying
δ∗A(with (ϕ)) ◦ reflA,B = [ϕ]. The morphism with (ϕ) is the equivalence class of
the continuous function

((γ,a), a′) 7→ b 7→ ϕ(γ,a)b.

To show that the equality is strong we additionally need to check [51,
Definition 10.5.2] that the canonical morphism

κ : Γ nAnB→ Γ nAnπ∗A(A)nEqAB

which is the equivalence class of the continuous function

((γ,a),b) 7→ (((γ,a), a),b)

is an isomorphism. This is indeed the case and its inverse is given by the
equivalence class of the function

(((γ,a), a′),b) 7→ ((γ,a),b).

QED

With this we have shown that for any poset P the fibration P is a model
of dependent type theory with strong dependent sums and strong, i.e. exten-
sional, equality.

A few words on how the identity type is modelled. A term t of type A
in context Γ is modelled as a section of the projection P (A). Because P is a
comprehension category the diagram

Γ nAnπ∗A(A) Γ nA

Γ nA Γ

ππ∗A(A) πA

πA

which is the image, P (πA), of the cartesian lifting πA of πA, is a pullback
diagram. Thus given two terms t and s of type A we get a unique morphism
〈〈id, t〉, s〉making the following diagram commute.

Γ

Γ nAnπ∗A(A) Γ nA

Γ nA Γ

〈〈id,t〉,s〉

t

s

ππ∗A(A) πA

πA
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The fibration p has a terminal object functor 1. We define the interpretation
of the type Id(t, s) to be the object

〈〈id, t〉, s〉6 (EqA(1(Γ nA))) .

Concretely in our model the underlying lattice of ~Id(t, s)� is the lattice 2∅.
The relation RId(t,s) is

RId(t,s)(p, [γ]) = {(∅,∅)
∣∣∣ (π2(t(γ)),π2(s(γ))) ∈ RA(p, [γ])}

=

|1| × |1| if (π2(t(γ),π2(s(γ)))) ∈ RA(p, [γ])

∅ otherwise

which is as expected. This also makes it clear why the model supports exten-
sional equality.

Changing the underlying poset

Let P and Q be two posets and ϕ : Q→ P a monotone function. It induces a
functor ϕ† : PEqu(P )→ PEqu(Q) (notice the reversed order of posets Q and
P ) by “precomposition” as follows. It maps an object Γ to the object ϕ†(Γ )
where ∣∣∣ϕ†(Γ )

∣∣∣ = |Γ |
Rϕ†(Γ ) = RΓ ◦ϕ

where we consider RΓ as a function from P to the set of partial equivalence
relations on |Γ |, so composition with ϕ is well-defined. Moreover because
ϕ is monotone the composition RΓ ◦ ϕ retains the monotonicity property.
The functor ϕ† maps a morphism realised by f to the equivalence class of
the continuous function f . Note however that the equivalence relations are
different, consequently ϕ† is in general neither full nor faithful.

Lemma 6.3.10. The functor ϕ† preserves limits and colimits. ♦

Further, given Γ ∈ PEqu(P ) there is an induced monotone function ϕΓ

ϕΓ :
∫
Q
ϕ†(Γ )→

∫
P
Γ

ϕΓ (q, [γ]q) =
(
ϕ(q), [γ]ϕ(q)

)
.

Note that by the definition of ϕ†(Γ ) the sets [γ]ϕ(q) and [γ]q are equal.
This function in turn induces a functor

ϕ†Γ : TypeP (Γ )→ TypeQ
(
ϕ†(Γ )

)
which acts as follows.
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objects It maps an object A to the object (|A| ,RA ◦ϕΓ ).

morphisms It maps the morphism realised by f to the equivalence class of
f , exactly as in the definition of ϕ†.

We have two types of reindexing. The following lemma states that they
commute in the appropriate way.

Lemma 6.3.11. Let [f ] : Γ1 → Γ2 be a morphism in PEqu(P ). The following
diagram of functors commutes on the nose

TypeP (Γ2) TypeP (Γ1)

TypeQ
(
ϕ†(Γ2)

)
TypeQ

(
ϕ†(Γ1)

)
ϕ†
Γ2

f ∗

ϕ†
Γ1

(ϕ†(f ))∗

♦

Proof. Since none of these functors changes the underlying lattices or the
realisers those are clearly preserved on the nose if only the relations are pre-
served. This is easily seen to be the case with the definitions provided. QED

Combining these two functors we get a morphism of fibrations

UFam(P ) UFam(Q)

PEqu(P ) PEqu(Q)

ϕ>

pP pQ

ϕ†

(6.1)

The functor ϕ> maps

objects the object (Γ ,A) to the object
(
ϕ†(Γ ),ϕ†

Γ
(A)

)
morphisms the morphism ([f ], [g]) to the morphism ([f ]′ , [g]′). We use ′ to

highlight the fact that the equivalence relations are different.

Theorem 6.3.12. The pair of functors just defined is a morphism of split fibra-
tions. It maps the chosen cartesian liftings to the chosen cartesian liftings. ♦

Proof. The fact that it is a morphism of fibrations follows from Lemma 6.3.11
and the fact that the functors never change the underlying realisers. QED
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Lemma 6.3.13. Let ϕ†
→

: PEqu(P )→ → PEqu(Q)→ be the functor induced by
ϕ† in the natural way and let PP and PQ be the comprehensions belonging to
fibrations pP and pQ. Then ϕ†

→ ◦ PP = PQ ◦ ϕ>. In particular for any A ∈
TypeP (Γ ) we have ϕ†(πA) = πϕ†

Γ
A.

Finally, the diagram of functors

UFam(P )Γ UFam(P )ΓnA

UFam(Q)ϕ†(Γ ) UFam(Q)ϕ†(Γ )nϕ†
Γ
(A)

π6A

ϕ> ϕ>

π6
ϕ†
Γ
A

commutes on the nose. Note that we have used the equality ϕ†(Γ ) n ϕ†
Γ
(A) =

ϕ†(Γ nA) which follows from the first part of the lemma. ♦

Theorem 6.3.14. If ϕ is a fibration then the morphism of fibrations (6.1) pre-
serves products and coproducts on the nose. This means (cf. [51, Definition
1.9.13])

• ϕ† preserves pullbacks on the nose

• For every Γ ∈ PEqu(P ) and A ∈ TypeP (Γ ) the canonical natural transforma-
tion

ϕ> ◦Π(A,−)→Π
(
ϕ†Γ (A),−

)
◦ϕ>

is the identity. This in particular means that we have an equality of objects

ϕ>(Π(A,B)) =Π
(
ϕ†Γ (A),ϕ>(B)

)
for every B ∈ TypeP (Γ nA).

• For every Γ ∈ PEqu(P ) and A ∈ TypeP (Γ ) the canonical natural transforma-
tion

Σ
(
ϕ†Γ (A),−

)
◦ϕ>→ ϕ> ◦Σ(A,−)

is the identity.

♦

Proof. Most of this is simple computation and only requires ϕ to be mono-
tone. We need the assumption that ϕ is a fibration to show that products are
preserved. To show how this assumption is used we spell out the proof of

ϕ>(Π(A,B)) =Π
(
ϕ†Γ (A),ϕ>(B)

)
.
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Since ϕ> or ϕ†
Γ

do not change the underlying lattices they are |A| → |B| on
both sides. To show that the families of relations are the same we show two
inclusions.

⊆ For every q ∈Q and (γ,γ) ∈ RΓ (ϕ(q)) we show

Rϕ>(Π(A,B))(q, [γ]) ⊆ RΠ(ϕ†Γ (A),ϕ>(B))(q, [γ]).

Recall

Rϕ>(Π(A,B))(q, [γ]) = RΠ(A,B)(ϕ(q), [γ]). (6.2)

Let
(f , f ′) ∈ RΠ(A,B)(ϕ(q), [γ]), (6.3)

r ≤ q and (a,a′) ∈ Rϕ†
Γ
(A)(r, [γ]). Recall

Rϕ†
Γ
(A)(r, [γ]) = RA(ϕ(r), [γ]).

Because ϕ is monotone ϕ(r) ≤ ϕ(q) holds and so from assumption (6.3)
we get (f a, f ′a′) ∈ RB(ϕ(r), [(γ,a)]) and by definition of ϕ> we have

Rϕ>(B)(r, [(γ,a)]) = RB(ϕ(r), [(γ,a)])

which gives

(f a, f ′a′) ∈ Rϕ>(B)(r, [(γ,a)])

as needed. Note that we have only needed ϕ to be monotone for this
direction.

⊇ For every q ∈Q and (γ,γ) ∈ RΓ (ϕ(q)) we show

RΠ(ϕ†Γ (A),ϕ>(B))(q, [γ]) ⊆ Rϕ>(Π(A,B))(q, [γ]).

Assume

(f , f ′) ∈ RΠ(ϕ†Γ (A),ϕ>(B))(q, [γ]). (6.4)

Recalling (6.2) let r ≤ ϕ(q) and (a,a′) ∈ RA(r, [γ]). We need to show
(f a, f ′a′) ∈ RB(r, [(γ,a)]). Because ϕ is a fibration there exists a u(q,r) ∈
Q such that u(q,r) ≤ q and ϕ(u(q,r)) = r. Thus by definition we have
(a,a′) ∈ Rϕ†

Γ
(A)(u(q,r), [γ]) and so from (6.4)

(f a, f ′a′) ∈ Rϕ>(B)(u(q,r), [(γ,a)]).

By definition and the property ϕ(u(q,r)) = r we have

Rϕ>(B)(u(q,r), [(γ,a)]) = RB(r, [(γ,a)])

which concludes the proof.
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QED

Remark 6.3.15. We have not needed the full assumption that ϕ is a fibration,
only that the function ϕ when restricted to ↓ q→↓ ϕ(q) is surjective for any
q ∈ Q. This is equivalent to requiring that ϕ : Q→ P is an open map when Q
and P are equipped with the version of the Alexandrov topology where the
opens are lower sets. Indeed, this is immediate from the fact that down sets
of the form ↓ q form a basis of the Alexandrov topology. However if we were
to consider universes we would likely also need the additional assumption
requiring that the assignment u(q,−) (see Definition 5.2.7 on page 186) is a
monotone function (cf. Lemma 5.5.12 on page 206). �

Modelling guarded dependent type theory

This section uses the definition of posets I (∆) for a finite set ∆ and mono-
tone functions I (f ) for f : ∆1 → ∆2 and their properties from Section 5.2
(page 184) which we do not repeat here. We define GR (∆) = PEqu(I (∆))
and for a function f : ∆1 → ∆2 we define GR (f ) : GR (∆1) → GR (∆2) to
be the functor I (f )† defined in the previous section. Similarly we define
GR> (∆) = UFam(I (∆)) and GR> (f ) : UFam(I (∆1))→ UFam(I (∆2)) to be the
functor I (f )> defined in the previous section. We write p∆ for the resulting
fibration. For an object Γ ∈GR (∆) we define GRΓ (∆) = TypeI(∆) (Γ ). Note that
GRΓ (∆) is isomorphic in a trivial way to the fibre over Γ with respect to the
fibration p∆. Because the diagram (6.1) commutes the functor GR> (f ), for
any f : ∆1 → ∆2, restricts to a functor GRΓ (∆1)→ GRGR(f )(Γ ) (∆2). We will
write GRΓ (f ) for this functor.

Clock quantification

Let ∆ be a finite set of clocks, κ a clock not in ∆ and ι : ∆→ ∆,κ the inclusion.
Let Γ ∈ GR (∆). We define a functor ∀κ : GRGR(ι)(Γ ) (∆,κ) → GRΓ (∆) right
adjoint to the functor GRΓ (ι). It maps an object A to the object ∀κA where

|∀κA| = |A|

R∀κA
(
(E,δ), [γ]E,δ

)
=

⋂
n∈N

RA
(
ι!n(E,δ), [γ]ι!n(E,δ)

)
where ι!n is defined just before Lemma 5.4.2 on page 194. In particular
Lemma 5.4.2 shows that ι!n satisfies I (ι) ◦ ι!n = idI(∆) which ensures that the
sets [γ]E,δ and [γ]ι!n(E,δ) are in fact equal, so the relation R∀κA is well-defined
and because PERs are closed under intersection it is also a PER.

The functor ∀κ maps a morphism realised by f to the morphism realised
by f . Note however that, again, the equivalence relations with which the
morphisms are constructed are not the same at the source and target, so ∀κ
is neither full nor faithful in general.
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Theorem 6.3.16. The functor ∀κ is right adjoint to GRΓ (ι). It additionally sat-
isfies the following properties.

• ∀κ ◦GRΓ (ι) = id

• The unit of the adjunction is the identity.

• The counit of the adjunction at an object A is given by the equivalence class
of the continuous function

γ 7→ a 7→ a.

Note however that it is not the identity.

• (The Beck-Chevalley condition for clock substitution) Given u : ∆1 → ∆2
and κ1 < ∆1 and κ2 < ∆2. Let û : ∆1,κ1 → ∆2,κ2 be the extension of u
mapping κ1 to κ2. Then

GRΓ (u) ◦∀κ1 = ∀κ2 ◦GRΓ (û)

and moreover the canonical morphism from left to right is the identity.

• If [f ] : Γ1→ Γ2 is a morphism in GR (∆) then

f ∗ ◦∀κ = ∀κ ◦ (GR (ι) ([f ]))∗.

This item shows that substitution in terms commutes with clock quantifica-
tion as it should.

♦

Proof. The first and second items follow from the property I (ι) ◦ ι!n = idI(∆).
The third item follows from the property

ι!δ(κ) (I (ι) (E,δ)) ≥ (E,δ)

proved in Lemma 5.4.2.
The last two items follow from the fact that the underlying lattices never

change and a simple computation showing the relations are preserved. QED

The delay functor

Let ∆ be a finite set of clocks, κ ∈ ∆ and Γ ∈ GR (∆). There is a functor
Iκ
Γ

:GRΓ (∆)→GRΓ (∆). It maps the object A to the object Iκ
Γ
(A) where∣∣∣Iκ

Γ
(A)

∣∣∣ = |A|

RIκ
Γ
A
(
(E,δ), [γ]E,δ

)
=

|A| × |A| if δ(κ) = 1

R
(
(E,δ−κ), [γ](E,δ−κ)

)
otherwise



6.3. GuardedEqu 237

where δ−κ is defined in Definition 5.3.2 on page 191. Lemma 5.3.3 then
shows in particular that δ−κ satisfies

(E,δ−κ) ≤ (E,δ)

and the assignment is monotone in (E,δ) which shows that RIκA is well-
defined. The functor Iκ

Γ
maps a morphism realised by f to the morphism

realised by f .
There is a natural transformation nextΓ ,κ : id → Iκ

Γ
which is realised, at

an object A, by the continuous function γ 7→ a 7→ a.

Remark 6.3.17. This is the place where monotonicity of the relations RX is
needed. Without it the morphism next would not exist. Consequently we
could not state and prove the fixed point property in Proposition 6.3.20 in
general. �

Theorem 6.3.18. The functor Iκ
Γ

we have defined satisfies the following proper-
ties.

• ∀κ ◦Iκ
Γ

= ∀κ

• If u : ∆1→ ∆2 and κ ∈ ∆1 then

I
f (κ)
GR(f )(Γ )◦GRΓ (u) =GRΓ (u) ◦Iκ

Γ

• If [f ] : Γ1→ Γ2 is a morphism in GR (∆) then

f ∗ ◦Iκ
Γ1

= Iκ
Γ2
◦f ∗.

The last item shows that substitution for term variables commutes over I
correctly. ♦

Remark 6.3.19. It can be shown that for or each κ the functor Iκ : PEqu(P )→
PEqu(P ) (which corresponds to the functor Iκ1) is an applicative functor in
the sense of [69]. In [27] the applicative functor rules are generalised using
delayed substitutions in order for I to behave well with respect to dependent
products. The functors Iκ

Γ
can be shown to validate these rules. The proofs

are straightforward, albeit notationally heavy. �

Fixed points

Let ∆ be a finite set of clocks, κ ∈ ∆, Γ ∈GR (∆) and A ∈GRΓ (∆).

Proposition 6.3.20. Let [g] : Iκ
Γ
A→ A be a morphism. There is a unique mor-

phism [f ] : 1→ A such that

[g] ◦nextΓ ,κA ◦[f ] = [f ].

♦
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Proof. Recall that 1 is the terminal object in GRΓ (∆). The underlying lattice
is 2∅ and the relations are total relations on this lattice. To show that a fixed
point exists we first construct a continuous function f : |Γ | → |1| → |A| sat-
isfying gγ(f γ∅) = f γ∅ for all γ ∈ |Γ |. This is easy to do using the fact that
taking least fixed points is a continuous operation [87, Proposition 3.14], i.e.,
we define

f γ∅ =
∞∨
n=0

(gγ)n(⊥).

Using this realiser we have [g] ◦ nextΓ ,κ ◦[f ] = [f ], provided that f is non-
expansive, i.e., that f is a realiser. We show this now. We need to show that
for any (E,δ) ∈ I (∆) and any (γ,γ ′) ∈ RΓ (E,δ) we have

(f γ∅, f γ ′∅) ∈ RA((E,δ), [γ]E,δ). (6.5)

We proceed by induction on δ(κ). To be more precise, the statement we are
proving by induction is that for any n ∈N and for any (E,δ) satisfying δ(κ) =
n the property (6.5) holds.

If δ(κ) = 1 then by the definition of RIκ
Γ
A((E,δ), [γ]E,δ) we have

(f γ∅, f γ ′∅) ∈ RIκ
Γ
A((E,δ), [γ]E,δ)

and so, because g is non-expansive,

(gγ(f γ∅), gγ ′(f γ ′∅)) ∈ RA((E,δ), [γ]E,δ)

but, e.g., gγ(f γ∅) = f γ∅ so we have (6.5). The induction step should now be
clear.

Uniqueness of the constructed fixed point follows by an analogous induc-
tion. QED

Note that the underlying realisers might have many fixed points, but
what we have shown is that all of them are equivalent according to the family
of PERs given.

Summary of the model

Theorems 6.3.12 and 6.3.14 together with Lemma 5.2.11 on page 189 ensure
that the pair (GR> (f ) ,GR (f )) is a morphism of split fibrations preserving
products and coproducts on the nose.

We can organise the constructions above into the general framework of fi-
brations. In particular we construct a PDTT-structure [51, Definition 11.3.1].
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The model GuardedEqu can be organised in the following diagram of fibra-
tions and comprehension categories.

D A
→

A E B
→

B

P

q
cod

r

Q

b
cod

We now explain what all of these are. The base category B and the category
E are the same. They have as objects finite subsets of the set of clocks CV. A
morphism f : ∆1→ ∆2 is a function ∆2→ ∆1 (note the reversal). So, briefly,
we may describe B as the opposite of the category of finite sets and functions.
The functor b is the identity functor and Q is defined as follows. We assume
we have a function new (−) that given a finite set of clocks returns a clock
not already in that set. The comprehension Q maps a set ∆ to the inclusion
ι∆ from ∆ to ∆,new (∆). It maps a function u : ∆ → ∆′ to the commutative
square

∆ ∆′

∆,new (∆) ∆′ ,new (∆′)

u

ι∆ ι∆′

û

where û is the extension of u mapping new (∆) to new (∆′). Thus we easily see
that cod ◦Q = id

B
= b.

Next, the category A has as objects pairs (∆,Γ ) where ∆ is a finite set of
clocks and Γ is an object of GR (∆). A morphism (∆1,Γ1)→ (∆2,Γ2) is a pair
(u, [f ]) where u is a function ∆2 → ∆1, i.e., a morphism in B from ∆1 to ∆2,
and [f ] is a morphism Γ1 → GR (u) (Γ2) in GR (∆1). Equivalently, this is the
total category of the Grothendieck construction applied to the functor GR,
the evident projection r : A→B is a split fibration.

Finally, the category D can be briefly described as the total category of
the Grothendieck construction applied to the functor GR> (−). Concretely,
its objects are pairs (∆, (Γ ,A)) where ∆ is a finite set of clocks and (Γ ,A) ∈
GR> (∆). A morphism

(∆1, (Γ1,A1))→ (∆2, (Γ2,A2))

is pair morphisms (u, ([f ], [g])) where u is a function ∆2→ ∆1 and ([f ], [g]) is
a morphism in GR> (∆1) from (Γ1,A1) to GR> (u) (Γ2,A2). The functor q maps
the pair (∆, (Γ ,A)) to the pair (∆,Γ ). Thus we have that r ◦ q is the projection
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associated with the Grothendieck construction. Moreover, q is also a split
fibration. Indeed, the cartesian lifting of

(u, [f ]) : (∆1,Γ1)→ q (∆2, (Γ2,A2))

is the morphism

(u, ([f ], [g])) :
(
∆1,

(
Γ1, f

∗
(
GRΓ2 (u) (A2)

)))
→ (∆2, (Γ2,A2))

and g : Γ1→ A2→ A2 is the function

γ 7→ a 7→ a.

Recall that p ∈ I (∆1) and so I (u) (p) ∈ I (∆2) as required of a PDTT-structure.
Note that q can also be seen as arising from the Grothendieck construction
mapping the object (∆,Γ ) to the category TypeI(∆) (Γ ).

And at last, the comprehension P maps the object (∆, (Γ ,A)) to the mor-
phism (object of the arrow category) (id∆,πA). Hence we see immediately
that all the projections are indeed r-vertical as required.

6.4 Continuity

Let A,B ∈ GR (∅) and [f ] : B → A a morphism. Such a morphism defines a
polynomial functor Pf . Abusing notation this functor can be described as

Pf (X) =
∑
a:A

Xf
−1(a).

or more precisely, Pf (X) is the total space, i.e., domain, of the exponential

π
f
2 in the slice over A, where π2 : X ×A→ A is the second projection.

As an example we have the object of streams whose elements are of type
A. We take the morphism [f ] : A→ A to be the identity. We then have

PidA(X) =
∑
a:A

X1 �
∑
a:A

X = A×X.

Alternatively, without abusing notation, recall that the identity on A is the
terminal object in the slice category over A. Hence πidA

2 � π2 as object of the
slice over A and the total space of π2 is precisely X ×A. The object of streams
is defined to be the final coalgebra of PidA .

A more interesting example is the type of possibly infinite lists of type A.
We take the morphism [f ] to be the inclusion of A to 1 +A. Then, abusing
notation,

Pf (X) �
∑
x:1

Xf
−1(x) +

∑
x:A

Xf
−1(x) �

∑
x:1

X0 +
∑
x:A

X1 � 1 +A×X
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so Pf indeed describes the shapes of lists. The object of lists is defined to
be the initial algebra, if it exists, of this functor and the object of potentially
infinite lists is defined to be the final coalgebra of this functor.

Bauer and Birkedal [13] describe the polynomial functor Pf : GR (∅) →
GR (∅) very concretely as follows. It maps an object X to the object(

|A| × (|B| → |X |),RPf (X)

)
where (a,u) ≈?

Pf (X) (a′ ,u′) if and only if (a,a′) ∈ RA(?) and

∀(b,b′) ∈ RB(?), (f (b), a) ∈ RA(?)→ (u(b),u′(b′)) ∈ RX(?).

We have used ? to denote the unique element of I (∅). This functor can be
lifted to the functor Pκf on GR (κ) for any clock κ by replacing f by GR (ι) (f ).
Concretely the functor maps the object X of GR (κ) to the object whose un-
derlying lattice is the same |A| × (|B| → |X |). To describe the relations we will
use the fact that there is only one equivalence relation on the set {κ} to rep-
resent pairs (E,δ) ∈ I (κ) by a single natural number n. The relation RPκf (X) at
n relates (a,u) and (a′ ,u′) if and only if (a,a′) ∈ RA(?) and

∀(b,b′) ∈ RB(?), (f (b), a) ∈ RA(?)→ (u(b),u′(b′)) ∈ RX(n)

The lifting is easily seen to satisfy the property

GR (ι) ◦Pf = Pκf ◦GR (ι) .

Next, Bauer and Birkedal [13] construct the algebraic lattice

M =
∞∏
i=0

(|B|i → |A|)

together with an isomorphism ϕ : |A| × (|B| → M) → M (in AlgLat) defined
component-wise (since M is a product, this makes sense). We use πi : M →
(|B|i → |A|) to denote projections.

π0(ϕ(a,u)) = ? 7→ a

πi+1(ϕ(a,u)) = (b,~b) ∈ |B|i+1 7→ πi(u(b))(~b)

where we have assumed in this case that products associate to the right.
The inverse ψ :M→ |A| × (|B| →M) to ϕ can also be given explicitly as

ψ(m) =
(
π0(m)(?),b 7→

{
~b 7→ πi+1(m)(b,~b)

}∞
i=0

)
.

We will write ψ1 = π1 ◦ψ :M→ |A| and ψ2 : π2 ◦ψ :M→ (|B| →M).
Next we construct the solution to Pκf (IκX) � X. The underlying lattice

of X is the lattice M constructed above. The family of relations RX is defined
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by induction on n using the isomorphisms ϕ and ψ. We define m ≈nX m
′ if

and only if (ψ1(m),ψ1(m′)) ∈ RA(?) and

∀(b,b′) ∈ RB(?), (f (b),ψ1(m)) ∈ RA(?)→ (ψ2(m)(b),ψ2(m′)(b′)) ∈
⋂
k<n

RX(k)

or alternatively

RX(1) =
{
(m,m′)

∣∣∣ (ψ1(m),ψ1(m′)) ∈ RA(?)
}

and m ≈n+1
X m′ if and only if (ψ1(m),ψ1(m′)) ∈ RA(?) and

∀(b,b′) ∈ RB(?), (f (b),ψ1(m)) ∈ RA(?)→ (ψ2(m)(b),ψ2(m′)(b′)) ∈ RX(n).

With these definitions it is easy to see that the functions ϕ and ψ are non-
expansive, and so they give rise to an isomorphism in GR (κ).

Finally, applying ∀κ to the object X we get the relation RM =
⋂∞
n=1RX(n).

Observe that the construction of RX is precisely the chain Φn(>) where Φ is
the operator defined by Bauer and Birkedal [13]. Because Φ commutes with
non-empty intersections, i.e.,

Φ

⋂
i∈I
Ri

 =
⋂
i∈I
Φ(Ri)

for all inhabited I , we have that RM defined above is precisely the largest
fixed point of Φ by Kleene’s fixed point theorem.

Hence (M,RM ) is the final coalgebra of Pf , as needed.
To recap, what we have shown is that we can construct final coalgebras of

polynomial functors using solutions of guarded domain equations.
Finally, we get more than from the presheaf models [28, 71]. In these

modelsM would just be a set with the property that it is the final coalgebra of
the functor Pf and we get no useful information on functions M→M defin-
able in the type theory, i.e., in the model functions M→M are all functions.
Using GuardedEqu we get the additional property that every morphism of
type M → M definable in the type theory is realised by a continuous func-
tion.

Let us look at a concrete example to see that this property gives useful
information. Let A be some set considered as an algebraic lattice A>,⊥ by
adding two elements> and⊥with> being the top element and⊥ the bottom
and otherwise the order is discrete. We consider A as an object of GR (∅) by
equipping A>,⊥ with the PER RA which is the identity relation on A, but does
not relate ⊥ or > to anything, including themselves.

The type of streams is given as the final coalgebra of the polynomial func-
tor PidA>,⊥

. This is not a very convenient description so we provide another
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description of the type of guarded streams of type A. The underlying lattice
is the product lattice

∏∞
i=0A>,⊥ and the relations are

RStrg(A)(n) =
{(
{xi}∞i=0 , {yi}

∞
i=0

) ∣∣∣∣ ∀k < n, (xk , yk) ∈ RA}
Note that n starts at 1, but the indexing of the product starts at 0, which is
the reason for using the strict order relation k < n.

There are two continuous functions α :
∏∞
i=0A>,⊥→M and β in the con-

verse direction, where M is the lattice constructed above, but specialised for
the functor PidA>,⊥

. So

M =
∞∏
i=0

(
Ai>,⊥→ A>,⊥

)
.

The function α is defined as

α(s) = { 7→ si}∞i=0

where si is the i-th element of the string. The function β is defined by induc-
tion. Given m ∈M define the stream β(m) by induction

β(m)0 = ψ1(m)

β(m)n+1 = ψ1 (ψ2(m) (β(m)n)) .

Then it is easy to see that these functions are continuous and that β ◦α = id.
In contrast α◦β is not the identity. However an easy calculation shows α and
β are non-expansive with respect to the equivalence relations given and that
α ◦ β ∼ id.

Thus because ∀κ is a functor the lattice
∏∞
i=0A>,⊥ together with the par-

tial equivalence relation relating only equal streams where none of the ele-
ments are > or ⊥ is the final coalgebra for the functor PidA>,⊥

.
Using the equivalence between partial equilogical spaces and equilogi-

cal spaces and using the fact that Top is a full subcategory of the category
of equilogical spaces [14] we quickly see that functions on streams are in
bijective correspondence with continuous functions on the topological space∏∞
i=0A, where A is equipped with the discrete topology. Standard topological

exercise then shows that these are precisely the functions with the property
that the first m elements of an output stream only depend on the first n, for
some n, elements of the input stream.

6.5 Discussion

A natural question to ask is what is the relationship between PEqu(P ) and
presheaves on P valued in PEqu. Clearly if P is the singleton poset these
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are equivalent. In general, one can show that the category of PEqu-valued
presheaves [P op,PEqu] is a reflective subcategory of PEqu(P ) and the reflec-
tor F is faithful, but in most cases it is not full. In particular if ∆ is inhabited
and P is I (∆) the reflector is not full. Based on this we conjecture that the
categories are not equivalent, however we do not have a proof of this. How-
ever even if they were equivalent, the presentation with families of PERs is
simpler to work with and does not have problems with coherence inherent
in the presheaf presentation.

An inspection of the constructions used shows that the use of algebraic
lattices as realisers is not essential. For instance it could be replaced by
other categories of domains (such as complete pointed partial orders, Scott
domains, or countably based algebraic lattices) or we could consider only
PERs on a reflexive domain. The important properties are that the category
is cartesian closed and that its endomorphisms have fixed points. Section 6.4
requires more, namely the existence of certain countable limits.

One can also model guarded recursive functions using (complete) or-
dered families of equivalences [44]. An important difference to that approach
is that we require no completeness conditions on our families of PERs. The
reason is precisely that the underlying category of realisers has fixed points.
In contrast, functions between sets do not necessarily have fixed points, so
the completeness conditions on ordered families of equivalences in [44] are
needed to ensure that suitably contractive functions have fixed points.

Guarded dependent type theory can be thought of in particular as a rich
“rule format” for defining functions on coinductive types, cf. the work of
Rutten [83] who defines a rule format for defining non-expansive stream
functions. Since guarded dependent type theory is an extension of depen-
dent type theory with types which allow us to express “non-expansiveness”,
the rule format is modular in the sense of [70]. Indeed in loc. cit. it is shown
that, if one defines a function, e.g., from streams to streams using a restricted
set of rules then the set of rules allowed in the construction of stream func-
tions can be extended with the newly defined function. This corresponds
to the observation that the newly defined function is non-expansive, which
in guarded dependent type theory corresponds to a function from guarded
streams to guarded streams. Using clock quantifiers affords more expressive-
ness and allows us to distinguish in the type theory between functions which
can be used in recursive definitions of streams (and stream functions) and
functions such as the tail function which can only be used in a much more
restricted way. The model constructed in this paper shows that guarded de-
pendent type theory can also be seen as a rule format for defining continous
functions on streams and, more generally, on a large class of coinductive
types.
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Theory with Coinductive Types
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extended with an appendix which provides more detailed derivations of ex-
amples, showing how the rules of the calculus are used.

Abstract

We present guarded dependent type theory, called gDTT, an exten-
sional dependent type theory with a ‘later’ modality and clock quan-
tifiers for programming and proving with guarded recursive and coin-
ductive types. The later modality is used to ensure the productivity
of recursive definitions in a modular, type based, way. Clock quanti-
fiers are used for controlled elimination of the later modality and for
encoding coinductive types using guarded recursive types. Key to the
development of gDTT are novel type and term formers involving what
we call ‘delayed substitutions’. These generalise the applicative functor
rules for the later modality considered in earlier work, and are crucial
for programming and proving with dependent types. We show sound-
ness of the type theory with respect to a denotational model.

247
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7.1 Introduction

Dependent type theory is useful both for programming, and for proving
properties of elements of types. Modern implementations of dependent type
theories such as Coq [68], Nuprl [33], Agda [73], and Idris [29], have been
used successfully in many projects. However, they offer limited support for
programming and proving with coinductive types.

One of the key challenges is to ensure that functions on coinductive types
are well-defined; that is, equations describing the function have a unique so-
lution. Syntactic guarded recursion [34], as used for example in Coq [45], en-
sures productivity by requiring that recursive calls be nested directly under
a constructor, but it is well known that such syntactic checks exclude many
valid definitions, particularly in the presence of higher-order functions.

To address this challenge, a type-based approach to guarded recursion,
more flexible than syntactic checks, was first suggested by Nakano [72]. A
new modality, written . and called ‘later’ [9], allows us to distinguish be-
tween data we have access to now, and data which we will get later. This
modality must be used to guard self-reference in type definitions, so for ex-
ample guarded streams of natural numbers are described by the guarded re-
cursive equation

Strg
N
'N× .Strg

N

asserting that stream heads are available now, but tails only later.
Types defined via guarded recursion with . are not standard coinduc-

tive types, as their denotation is defined via models based on the topos of
trees [22]. More pragmatically, the bare addition of . disallows productive
but acausal [57] functions such as the ‘every other’ function that returns ev-
ery second element of a stream. Atkey and McBride proposed clock quanti-
fiers [11] for such functions; these have consequently been extended to de-
pendent types [28, 71], and Møgelberg [71, Theorem 2] has shown that they
allow the definition of types whose denotation is precisely that of standard
coinductive types interpreted in set-based semantics. As such, they allow us
to program with real coinductive types, while retaining productivity guaran-
tees.

In this paper we introduce the extensional guarded dependent type the-
ory gDTT, which provides a framework where guarded recursion can be used
not just for programming with coinductive types but also for coinductive rea-
soning.

As types depend on terms, one of the key challenges in designing gDTT
is coping with elements that are only available later, i.e., elements of types of
the form .A. We do this by generalising the applicative functor structure of
. to the dependent setting. Recall the rules for applicative functors [69]:

Γ ` t : A

Γ ` next t : .A

Γ ` f : .(A→ B) Γ ` t : .A

Γ ` f ~ t : .B (7.1)
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The first rule allows us to make later use of data that we have now. The
second allows, for example, functions to be applied recursively to the tails of
streams.

Suppose now that f has type .(Πx : A.B), and t has type .A. What should
the type of f ~t be? Intuitively, t will eventually reduce to some value nextu,
and so the resulting type should be .(B[u/x]), but if t is an open term we may
not be able to perform this reduction. This problem occurs in coinductive
reasoning: if, e.g., A is Strg

N
, and B a property of streams, in our applications

f will be a (guarded) coinduction assumption that we will want to apply to
the tail of a stream, which has type .Strg

N
.

We hence must introduce a new notion, of delayed substitution, similar to
let-binding, allowing us to give f ~ t the type

. [x � t] .B

binding x in B. Definitional equality rules then allow us to simplify this
type when t has form nextu, i.e., . [x � nextu] .B ≡ .(B[u/x]). This construc-
tion generalises to bind a list of variables. Delayed substitution is essential
to many examples, as shown in Section 7.3, and surprisingly the applicative
functor term-former ~, so central to the standard presentation of applica-
tive functors, turns out to be definable via delayed substitutions, as shown in
Section 7.2.

Contributions. The contributions of this paper are:

• We introduce the extensional guarded dependent type theory gDTT,
and show that it gives a framework for programming and proving with
guarded recursive and coinductive types. The key novel feature is the
generalisation of the ‘later’ type-former and ‘next’ term-former via de-
layed substitutions;

• We prove the soundness of gDTT via a model similar to that used in
earlier work on guarded recursive types and clock quantifiers [28, 71].

We focus on the design and soundness of the type theory and restrict atten-
tion to an extensional type theory. We postpone a treatment of an intensional
version of the theory to future work (see Secs. 7.7 and 7.8).

In addition to the examples included in this paper, we are pleased to note
that a preliminary version of gDTT has already proved crucial for formaliz-
ing a logical relations adequacy proof of a semantics for PCF using guarded
recursive types by Paviotti et. al. [74].

7.2 Guarded Dependent Type Theory

gDTT is a type theory with base types unit 1, booleans B, and natural num-
bers N, along withΠ-types, Σ-types, identity types, and universes. For space



250 Guarded Dependent Type Theory with Coinductive Types

reasons we omit all definitions that are standard to such a type theory; see
e.g. Jacobs [51]. Our universes are à la Tarski, so we distinguish between
types and terms, and have terms that represent types; they are called codes
of types and they can be recognised by their circumflex, e.g., N̂ is the code
of the type N. We have a map El sending codes of types to their correspond-
ing type. We follow standard practice and often omit El in examples, except
where it is important to avoid confusion.

We fix a countable set of clock variables CV = {κ1,κ2, · · · } and a single clock
constant κ0, which will be necessary to define, for example, the function hd
in Section 7.5. A clock is either a clock variable or the clock constant; they
are intuitively temporal dimensions on which types may depend. A clock
context ∆,∆′ , · · · is a finite set of clock variables. We use the judgement `∆
κ to express that either κ is a clock variable in the set ∆ or κ is the clock
constant κ0. All judgements, summarised in Figure 7.1, are parametrised by
clock contexts. Codes of types inhabit universes U∆ parametrised by clock
contexts similarly. The universe U∆ is only well-formed in clock contexts ∆′

where ∆ ⊆ ∆′. Intuitively, U∆ contains codes of types that can vary only along
dimensions in∆. We have universe inclusions from U∆ to U∆′ whenever∆ ⊆ ∆′;
in the examples we will not write these explicitly. Note that we do not have
Û∆ : U∆′ , i.e., these universes do not form a hierarchy. We could additionally
have an orthogonal hierarchy of universes, i.e. for each clock context ∆ a
hierarchy of universes U1

∆
: U2

∆
: · · · .

All judgements are closed under clock weakening and clock substitution.
The former means that if, e.g., Γ `∆ t : A is derivable then, for any clock
variable κ < ∆, the judgement Γ `∆,κ t : A is also derivable. The latter means
that if, e.g., Γ `∆,κ t : A is derivable and `∆ κ′ then the judgement Γ [κ′/κ] `∆
t[κ′/κ] : A[κ′/κ] is also derivable, where clock substitution [κ′/κ] is defined
as obvious.

The rules for guarded recursion can be found in Figs. 7.2 and 7.3; rules
for coinductive types are postponed until Section 7.4. Recall the ‘later’ type
former ., which expresses that something will be available at a later time.
In gDTT we have

κ
. for each clock κ, so we can delay a type along different

dimensions. As discussed in the introduction, we generalise the applicative
functor structure of each

κ
. via delayed substitutions, which allow a substitu-

`∆ κ valid clock

Γ `∆ well-formed context

Γ `∆ A type well-formed type

Γ `∆ t : A typing judgment

Γ `∆ A ≡ B type equality

Γ `∆ t ≡ u : A term equality

`∆ ξ : Γ
κ
_ Γ ′ delayed substitution

Figure 7.1: Judgements in gDTT.
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tion to be delayed until its substituent is available. We showed in the in-
troduction how a type with a single delayed substitution

κ
. [x � t] .A should

work. However if we have a term f with more than one argument, for exam-
ple of type

κ
. (Π(x : A).Π(y : B).C), and wish to type an application f κO t κO u

(where κO is the applicative functor operation ~ for clock κ) we may have nei-
ther t nor u available now, and so we need sequences of delayed substitutions
to define the type

κ
. [x � t,y � u] .C. Our concrete examples of Section 7.3 will

show that this issue arises in practice. We therefore define sequences of de-
layed substitutions ξ. The new raw types, terms, and delayed substitutions
of gDTT are given by the grammar

A,B ::= · · · | κ.ξ.A t,u ::= · · · | nextκ ξ.t | .̂κt ξ ::= · | ξ [x � t] .

Note that we just write
κ
.A where its delayed substitution is the empty ·, and

that
κ
.ξ.A binds the variables substituted for by ξ in A, and similarly for next.

The three rules DS-Emp, DS-Cons, and Tf-. are used to construct the
type

κ
.ξ.A. These rules formulate how to generalise these types to arbitrarily

long delayed substitutions. Once the type formation rule is established, the
introduction rule Ty-Next is the natural one.

With delayed substitutions we can define κO as

f κO t , nextκ
[
g � f
x � t

]
.g x.

Using the rules in Figure 7.2 we can derive the following typing judgement
for κO

Γ `∆ f :
κ
.ξ.Π(x : A).B Γ `∆ t :

κ
.ξ.A

Γ `∆ f κO t :
κ
.ξ[x � t].B

Ty-~

When a term has the form nextκ ξ [x � nextκ ξ.u] .t, then we have enough
information to perform the substitution in both the term and its type. The
rule TmEq-Force applies the substitution by equating the term with the re-
sult of an actual substitution, nextκ ξ.t[u/x]. The rule TyEq-Force does the
same for its type. Using TmEq-Force we can derive the basic term equality

(nextκ ξ.f ) κO (nextκ ξ.t) ≡ nextκ ξ.(f t).

typical of applicative functors [69].
It will often be the case that a delayed substitution is unnecessary, be-

cause the variable to be substituted for does not occur free in the type/term.
This is what TyEq-.-Weak and TmEq-Next-Weak express, and with these we
can justify the simpler typing rule

Γ `∆ f :
κ
.ξ.(A→ B) Γ `∆ t :

κ
.ξ.A

Γ `∆ f κO t :
κ
.ξ.B
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Universes

∆′ ⊆ ∆ Γ `∆
Γ `∆ U∆′ type

Univ

Γ `∆ A : U∆′
Γ `∆ El(A) type

El

Delayed substitutions:

Γ `∆ `∆ κ

`∆ · : Γ
κ
_ ·

DS-Emp

`∆ ξ : Γ
κ
_ Γ ′ Γ `∆ t :

κ
.ξ.A

`∆ ξ [x � t] : Γ
κ
_ Γ ′ ,x : A

DS-Cons

Typing rules:

Γ ,Γ ′ `∆ A type `∆ ξ : Γ
κ
_ Γ ′

Γ `∆
κ
.ξ.A type

Tf-.
`∆′ κ Γ `∆ A :

κ
.U∆′

Γ `∆ .̂κA : U∆′
Ty-̂.

Γ ,Γ ′ `∆ t : A `∆ ξ : Γ
κ
_ Γ ′

Γ `∆ nextκ ξ.t :
κ
.ξ.A

Ty-Next
`∆ κ Γ ,x :

κ
.A `∆ t : A

Γ `∆ fixκ x.t : A
Ty-Fix

Figure 7.2: Overview of the new typing rules involving . and delayed substi-
tutions.

In other words, delayed substitutions on the type are not necessary when we
apply a non-dependent function.

Further, we have the applicative functor identity law

(nextκ ξ.λx.x) κO t ≡ t.

This follows from the rule TmEq-Next-Var, which allows us to simplify a
term nextκ ξ [y � t] .y to t.

Sometimes it is necessary to switch the order in the delayed substitution.
Two substitutions can switch places, as long as they do not depend on each
other; this is what TyEq-.-Exch and TmEq-Next-Exch express.

Rule TmEq-Next-Comm is not used in the examples of this paper, but it
implies the rule nextκ ξ [x � t] .nextκ x ≡ nextκ t, which is needed in Paviotti’s
PhD work.

Fixed points and guarded recursive types

In gDTT we have for each clock κ valid in the current clock context a fixed-
point combinator fixκ. This differs from a traditional fixed-point combinator
in that the type of the recursion variable is not the same as the result type; in-
stead its type is guarded with

κ
.. When we define a term using the fixed-point,
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Definitional type equalities:

κ
.ξ [x � t] .A ≡ κ.ξ.A (TyEq-.-Weak)

κ
.ξ [x � t,y � u]ξ ′ .A ≡ κ.ξ [y � u,x � t]ξ ′ .A (TyEq-.-Exch)
κ
.ξ [x � nextκ ξ.t] .A ≡ κ.ξ.A[t/x] (TyEq-Force)

El(̂.κ (nextκ ξ.t)) ≡ κ.ξ.El(t) (TyEq-El-.)

Idκ
.ξ.A

(nextκ ξ.t,nextκ ξ.s) ≡ κ.ξ.IdA(t, s) (TyEq-.)

Definitional term equalities:

nextκ ξ [x � t] .u ≡ nextκ ξ.u (TmEq-Next-Weak)

nextκ ξ [x � t] .x ≡ t (TmEq-Next-Var)

nextκ ξ [x � t,y � u]ξ ′ .v ≡ nextκ ξ [y � u,x � t]ξ ′ .v (TmEq-Next-Exch)

nextκ ξ.nextκ ξ ′ .u ≡ nextκ ξ ′ .nextκ ξ.u (TmEq-Next-Comm)

nextκ ξ [x � nextκ ξ.t] .u ≡ nextκ ξ.u[t/x] (TmEq-Force)

fixκ x.t ≡ t[nextκ (fixκ x.t) /x] (TmEq-Fix)

Figure 7.3: New type and term equalities in gDTT. Rules TyEq-.-Weak and
TmEq-Next-Weak require that A and u are well-formed in a context without
x. Rules TyEq-.-Exch and TmEq-Next-Exch assume that exchanging x and
y is allowed, i.e., that the type of x does not depend on y and vice versa.
Likewise, rule TmEq-Next-Comm assumes that exchanging the codomains of
ξ and ξ ′ is allowed and that none of the variables in the codomains of ξ and
ξ ′ appear in the type of u.

we say that it is defined by guarded recursion. When the term is intuitively a
proof, we say we are proving by Löb induction [9].

Guarded recursive types are defined as fixed-points of suitably guarded
functions on universes. This is the approach of Birkedal and Møgelberg [18],
but the generality of the rules of gDTT allows us to define more interest-
ing dependent guarded recursive types, for example the predicates of Sec-
tion 7.3.

We first illustrate the technique by defining the (non-dependent) type
of guarded streams. Recall from the introduction that we want the type of
guarded streams, for clock κ, to satisfy the equation StrκA ≡ A×

κ
.StrκA.

The type A will be equal to El(B) for some code B in some universe U∆
where the clock variable κ is not in ∆. We then define the code SκA of StrκA in
the universe U∆,κ to be SκA , fixκX.B ×̂ .̂κX, where ×̂ is the code of the (simple)

product type. Via the rules of gDTT we can show StrκA ' A×
κ
.StrκA as desired.
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The head and tail operations, hdκ : StrκA → A and tlκ : StrκA →
κ
.StrκA are

simply the first and the second projections. Conversely, we construct streams
by pairing. We use the suggestive consκ notation which we define as

consκ : A→ κ
.StrκA→ StrκA consκ , λ (a : A)

(
as :

κ
.StrκA

)
.〈a,as〉

Defining guarded streams is also done via guarded recursion, for example
the stream consisting only of ones is defined as ones , fixκ x.consκ 1x.

The rule TyEq-El-. is essential for defining guarded recursive types as
fixed-points on universes, and it can also be used for defining more advanced
guarded recursive dependent types such as covectors; see Section 7.3.

Identity types

The type theory gDTT has standard extensional identity types IdA(t,u) (see,
e.g., Jacobs [51]) but with two additional type equivalences necessary for
working with guarded dependent types. We write rA t for the reflexivity
proof IdA(t, t). The first type equivalence is the rule TyEq-.. This rule, which
is validated by the model of Section 7.6, may be thought of by analogy to
type equivalences often considered in homotopy type theory [92], such as

IdA×B(〈s1, s2〉 ,〈t1, t2〉) ≡ IdA(s1, t1)× IdB(s2, t2). (7.2)

There are two important differences. The first is that (7.2) is (using univa-
lence) a propositional type equality, whereas TyEq-. specifices a definitional
type equality. This is natural in an extensional type theory. The second dif-
ference is that there are terms going in both directions in (7.2), whereas we
would have a term of type Idκ

.ξ.A
(nextκ ξ.t,nextκ ξ.u) → κ

.ξ.IdA(t,u) without
the rule TyEq-..

The second novel type equality rule, which involves clock quantification,
will be presented in Section 7.4.

7.3 Examples

In this section we present some example terms typable in gDTT. Our exam-
ples will use a term, which we call pη, of type Π(s, t : A × B).IdA(π1t,π1s)→
IdB(π2t,π2s) → IdA×B(t, s). This term is definable in any type theory with a
strong (dependent) elimination rule for dependent sums. The second prop-
erty we will use is that StrκA ≡ A×

κ
.StrκA. Because hdκ and tlκ are simply first

and second projections, pη also has typeΠ
(
xs,ys : StrκA

)
.IdA(hdκ xs,hdκ ys)→

Idκ
.StrκA

(tlκ xs, tlκ ys)→ IdStrκA(xs,ys).
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zipWithκ preserves commutativity. In gDTT we define the zipWithκ func-
tion which has the type (A→ B→ C)→ StrκA→ StrκB→ StrκC by

zipWithκ f , fixκϕ.λxs,ys.consκ (f (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys) .

We show that commutativity of f implies commutativity of zipWithκ f , i.e.,
that

Π(f : A→ A→ B). (Π(x,y : A).IdB(f xy,f y x))→

Π
(
xs,ys : StrκA

)
.IdStrκB(zipWithκ f xsys,zipWithκ f ysxs)

is inhabited. The term that inhabits this type is

λf .λc.fixκϕ.λxs,ys.pη (c (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys) .

Here, ϕ has type
κ
.(Π

(
xs,ys : StrκA

)
.IdStrκB(zipWithκ f xsys,zipWithκ f ysxs)) so

to type the term above, we crucially need delayed substitutions.

An example with covectors. The next example is more sophisticated, as it
involves programming and proving with a data type that, unlike streams,
is dependently typed. Indeed the generalised later, carrying a delayed sub-
stitution, is necessary to type even elementary programs. Covectors are the
potentially infinite version of vectors (lists with length). To define guarded
covectors we first need guarded co-natural numbers. The definition in gDTT

is CoNκ , El
(
fixκX.(̂1 +̂ .̂κX)

)
; this type satisfies CoNκ ≡ 1 +

κ
.CoNκ. Using

CoNκ we can define the type family of covectors CoVecκAn , El( ̂CoVecκAn),
where

̂CoVecκA ,fixκ
(
ϕ :

κ
.(CoNκ→U∆,κ)

)
.λ(n : CoNκ).casenof

inlu⇒ 1̂

inrm⇒ A ×̂ .̂κ(ϕ κOm).

We will not distinguish between CoVecκA and ̂CoVecκA. As an example of cov-
ectors, we define ones of type Π(n : CoNκ).CoVecκ

N
n which produces a cov-

ector of any length consisting only of ones:

ones , fixκϕ.λ(n : CoNκ).casenof {inlu⇒ inl〈〉; inrm⇒ 〈1,ϕ κOm〉} .

Although this is one of the simplest covector programs one can imagine, it
does not type-check without the generalised later with delayed substitutions.

The map function on covectors is defined as

map : (A→ B)→Π(n : CoNκ).CoVecκAn→ CoVecκBn

mapf , fixκϕ.λ(n : CoNκ).casenof

inlu⇒ λ(x : 1).x

inrm⇒ λ
(
p : A× κ. [n�m] .(CoVecκAn)

)
.〈f (π1p) ,ϕ κOm κO (π2p)〉 .
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It preserves composition: the following type is inhabited

Π(f : A→ B)(g : B→ C)(n : CoNκ)(xs : CoVecκAn).

IdCoVecκC n(mapg n (mapf nxs),map(g ◦ f )nxs)

by the term

λ(f : A→ B)(g : B→ C).fixκϕ.λ(n : CoNκ).casenof

inlu⇒ λ(xs : 1).r1 xs

inrm⇒ λ(xs : CoVecκA(inrm)).pη (rC g(f (π1xs))) (ϕ κOm κOπ2xs) .

7.4 Coinductive Types

As discussed in the introduction, guarded recursive types on their own dis-
allow productive but acausal function definitions. To capture such functions
we need to be able to remove

κ
.. However such eliminations must be con-

trolled to avoid trivialising
κ
.. If we had an unrestricted elimination term

elim :
κ
.A→ A every type would be inhabited via fixκ, making the type the-

ory inconsistent.
However, we may eliminate

κ
. provided that the term does not depend on

the clock κ, i.e., the term is typeable in a context where κ does not appear.
Intuitively, such contexts have no temporal properties along the κ dimen-
sion, so we may progress the computation without violating guardedness.
Figure 7.4 extends the system of Figure 7.2 to allow the removal of clocks in
such a setting, by introducing clock quantifiers ∀κ [11, 28, 71]. This is a bind-
ing construct with associated term constructor Λκ, which also binds κ. The
elimination term is clock application. Application of the term t of type ∀κ.A to
a clock κ is written as t[κ]. One may think of ∀κ.A as analogous to the type
∀α.A in polymorphic lambda calculus; indeed the basic rules are precisely
the same, but we have an additional construct prevκ.t, called ‘previous’, to
allow removal of the later modality

κ
..

Typing this new construct prevκ.t is somewhat complicated, as it requires
‘advancing’ a delayed substitution, which turns it into a context morphism
(an actual substitution); see Figure 7.5 for the definition. The judgement
ρ :∆ Γ → Γ ′ expresses that ρ is a context morphism from context Γ `∆ to the
context Γ ′ `∆. We use the notation ρ[t/x] for extending the context morphism
by mapping the variable x to the term t. We illustrate this with two concrete
examples.

First, we can indeed remove later under a clock quantier:

force : ∀κ.κ.A→∀κ.A force , λx.prevκ.x[κ] .

The type is correct because advancing the empty delayed substitution in
κ
.

turns it into the identity substitution ι, and Aι ≡ A. The β and η rules en-
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sure that force is the inverse to the canonical term λx.Λκ.nextκ x[κ] of type
∀κ.A→∀κ.κ.A.

Second, we may see an example with a non-empty delayed substitution
in the term prevκ.nextκλn.succn κOnextκ 0 of type ∀κ.N. Recall that κO is
syntactic sugar and so more precisely the term is

prevκ.nextκ
[
f � nextκλn.succn
x � nextκ 0

]
.f x. (7.3)

Advancing the delayed substitution turns it into the substitution mapping
the variable f to the term (prevκ.nextκλn.succn)[κ] and the variable x to
the term (prevκ.nextκ 0)[κ]. Using the β rule for prev, then the β rule for ∀κ,
this simplifies to the substitution mapping f to λn.succn and x to 0. With
this we have that the term (7.3) is equal toΛκ. ((λn.succn)0) which is in turn
equal to Λκ.1.

An important property of the term prevκ.t is that κ is bound in t; hence
prevκ.t has type ∀κ.A instead of just A. This ensures that substitution of
terms in types and terms is well-behaved and we do not need the explicit
substitutions used, for example, by Clouston et al. [31] where the unary type-
former � was used in place of clocks. This binding structure ensures, for
instance, that the introduction rule Ty-Λ closed under substitution in Γ .

The rule TmEq-∀-fresh states that if t has type ∀κ.A and the clock κ does
not appear in the type A, then it does not matter to which clock t is applied,
as the resulting term will be the same. In the polymorphic lambda calculus,
the corresponding rule for universal quantification over types would be a
consequence of relational parametricity.

We further have the construct ∀̂ and the rule Ty-∀-code which witness
that the universes are closed under ∀κ.

To summarise, the new raw types and terms, extending those of Sec-
tion 7.2, are

A,B ::= · · · | ∀κ.A t,u ::= · · · | Λκ.t | t[κ] | ∀̂ t | prevκ.t

Finally, we have the equality rule TyEq-∀-Id analogous to the rule TyEq-

.. Note that, as in Section 7.2, there is a canonical term of type Id∀κ.A(t, s)→
∀κ.IdA(t[κ] , s[κ]) but, without this rule, no term in the reverse direction.

Derivable type isomorphisms

The encoding of coinductive types using guarded recursive types crucially
uses a family of type isomorphisms commuting ∀κ over other type form-
ers [11, 71]. By a type isomorphism A � B we mean two well-typed terms f
and g of types f : A→ B and g : B→ A such that f (g x) ≡ x and g(f x) ≡ x. The
first type isomorphism is ∀κ.A � A whenever κ is not free in A. The terms
g = λx.Λκ.x of type A→∀κ.A and f = λx.x[κ0] of type A→∀κ.Awitness the
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Γ `∆ Γ `∆,κ A type

Γ `∆ ∀κ.A type
Tf-∀

∆′ ⊆ ∆ Γ `∆ t : ∀κ.U∆′ ,κ
Γ `∆ ∀̂ t : U∆′

Ty-∀-code

Γ `∆ Γ `∆,κ t : A

Γ `∆ Λκ.t : ∀κ.A
Ty-Λ

`∆ κ′ Γ `∆ t : ∀κ.A
Γ `∆ t

[
κ′

]
: A[κ′/κ]

Ty-app

Γ `∆ Γ `∆,κ t :
κ
.ξ.A

Γ `∆ prevκ.t : ∀κ.(A(advκ∆(ξ)))
Ty-prev

Figure 7.4: Overview of the new typing rules for coinductive types.

`∆,κ · : Γ
κ
_ · Γ `∆

advκ∆(·) , ι :∆,κ Γ → Γ

`∆,κ ξ[x � t] : Γ
κ
_ Γ ′ ,x : A Γ `∆

advκ∆(ξ[x � t]) , advκ∆(ξ)[(prevκ.t)[κ] /x] :∆,κ Γ → Γ ,Γ ′ ,x : A

Figure 7.5: Advancing a delayed substitution.

isomorphism. Note that we used the clock constant κ0 in an essential way.
The equality f (g x) ≡ x follows using only the β rule for clock application.
The equality g(f x) ≡ x follows using by the rule TmEq-∀-fresh.

The following type isomorphisms follow by using β and η laws for the
constructs involved.

- If κ < A then ∀κ.Π(x : A).B �Π(x : A).∀κ.B.

- ∀κ.Σ (x : A)B � Σ (y : ∀κ.A) (∀κ.B [y[κ]
/
x]).

- ∀κ.A � ∀κ.κ.A.

There is an important additional type isomorphism witnessing that ∀κ
commutes with binary sums; however unlike the isomorphisms above we
require equality reflection to show that the two functions are inverse to each
other up to definitional equality. There is a canonical term of type ∀κ.A +
∀κ.B→ ∀κ.(A + B) using just ordinary elimination of coproducts. Using the
fact that we encode binary coproducts using Σ-types and universes we can
define a term com+ of type ∀κ.(A + B) → ∀κ.A + ∀κ.B which is a inverse to
the canonical term. In particular com+ satisfies the following two equalities
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Definitional type equalities:

Γ `∆ ∆′ ⊆ ∆ Γ `∆,κ t : U∆′ ,κ
Γ `∆ El(̂∀Λκ.t) ≡ ∀κ.El(t)

TyEq-∀-el

Γ `∆ Γ `∆,κ A type Γ `∆ t : ∀κ.A Γ `∆ s : ∀κ.A
Γ `∆ ∀κ.IdA(t[κ] , s[κ]) ≡ Id∀κ.A(t, s)

TyEq-∀-Id

Definitional term equalities:

Γ `∆ `∆ κ′ Γ `∆,κ t : A

Γ `∆ (Λκ.t)
[
κ′

]
≡ t[κ′/κ] : A[κ′/κ]

TmEq-∀-β
κ < ∆ Γ `∆ t : ∀κ.A
Γ `∆ Λκ.t[κ] ≡ t : ∀κ.A

TmEq-∀-η

κ < ∆ Γ `∆ A type Γ `∆ t : ∀κ.A `∆ κ′ `∆ κ′′

Γ `∆ t
[
κ′

]
≡ t

[
κ′′

]
: A

TmEq-∀-fresh

Γ `∆ `∆,κ ξ : Γ
κ
_ Γ ′ Γ ,Γ ′ `∆,κ t : A

Γ `∆ prevκ.nextκ ξ.t ≡Λκ.t(advκ∆(ξ)) : ∀κ.(A(advκ∆(ξ)))
TmEq-prev-β

Γ `∆ Γ `∆,κ t :
κ
.A

Γ `∆,κ nextκ ((prevκ.t)[κ]) ≡ t :
κ
.A

TmEq-prev-η

Figure 7.6: Type and term equalities involving clock quantification.

which will be used below.

com+ (Λκ. inl t) ≡ inlΛκ.t com+ (Λκ. inr t) ≡ inrΛκ.t. (7.4)

7.5 Example Programs with Coinductive Types

Let A be a type with code Â in clock context ∆ and κ a fresh clock variable.
Let StrA = ∀κ.StrκA. We can define head, tail and cons functions

hd : StrA→ A

tl : StrA→ StrA
cons : A→ StrA→ StrA

hd , λxs.hdκ0 (xs[κ0])

tl , λxs.prevκ. tlκ (xs[κ])

cons , λx.λxs.Λκ.consκ x (nextκ (xs[κ])) .

With these we can define the acausal ‘every other’ function eoκ that re-
moves every second element of the input stream. It is acausal because the
second element of the output stream is the third element of the input. There-
fore to type the function we need to have the input stream always available,
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so clock quantification must be used. The function eoκ of type StrA→ StrκA is
defined as

eoκ , fixκϕ.λ (xs : StrA) .consκ(hdxs) (ϕ κOnextκ ((tl (tlxs)))) .

The result is a guarded stream, but we can easily strengthen it and define eo
of type StrA→ StrA as eo , λxs.Λκ.eoκ xs.

We can also work with covectors (not just with guarded covectors as we
did in Section 7.3). This is a dependent coinductive type indexed by conat-
ural numbers which is the type CoN = ∀κ.CoNκ. It is easy to define 0 and
succ as 0 ,Λκ. inl〈〉 and succ , λn.Λκ. inr(nextκ (n[κ])). Next, we can define
a transport function comCoN of type comCoN : CoN→ 1 + CoN satisfying

comCoN0 ≡ inl〈〉 comCoN(succn) ≡ inrn. (7.5)

This function is used to define the type family of covectors as CoVecA n ,
∀κ.CoVecκA n where CoVecκA : CoN→U∆,κ is the term

fixκϕ.λ (n : CoN) .casecomCoNnof
{
inl ⇒ 1̂; inrn⇒ A×̂̂.κ (ϕ κO (nextκ n))

}
.

Using term equalities (7.4) and (7.5) we can derive the type isomorphisms

CoVecA 0 ≡ ∀κ.1 � 1

CoVecA (succn) ≡ ∀κ.
(
A× κ.

(
CoVecκA n

))
� A×CoVecA n

(7.6)

which are the expected properties of the type of covectors.
A simple function we can define is the tail function

tl : CoVecA(succn)→ CoVecA tl , λv.prevκ.π2 (v[κ]) .

Note that (7.6) is needed to type tl. The map function of type

map : (A→ B)→Π(n : CoN).CoVecAn→ CoVecBn

is defined as mapf , λn.λxs.Λκ.mapκ f n (xs[κ]) where mapκ is

mapκ : (A→ B)→Π(n : CoN).CoVecκAn→ CoVecκBn

mapκ = λf .fixκϕ.λn.casecomCoNnof

inl ⇒ λv.v

inrn⇒ λv.
〈
f (π1v),ϕ κO (nextκ n) κOπ2(v)

〉
.

Lifting guarded functions

In this section we show how in general we may lift a function on guarded
recursive types, such as addition of guarded streams, to a function on coin-
ductive streams. Moreover, we show how to lift proofs of properties, such as



7.6. Soundness 261

the commutativity of addition, from guarded recursive types to coinductive
types.

Let Γ be a context in clock context ∆ and κ a fresh clock. Suppose A and
B are types such that Γ `∆,κ A type and Γ ,x : A `∆,κ B type. Finally let f be
a function of type Γ `∆,κ f : Π(x : A).B. We define L(f ) satisfying the typing
judgement Γ `∆ L(f ) :Π(y : ∀κ.A).∀κ. (B [y[κ] /x]) as L(f ) , λy.Λκ.f (y[κ]).

Now assume that f ′ is another term of type Π(x : A).B (in the same con-
text) and that we have proved Γ `∆,κ p :Π(x : A).IdB(f x,f ′ x). As above we can
give the term L(p) the type Π(y : ∀κ.A).∀κ.IdB[y[κ]/x](f (y[κ]), f ′(y[κ])). which
by using the type equality TyEq-∀-Id and the η rule for ∀ is equal to the
type Π(y : ∀κ.A).Id∀κ.B[y[κ]/x](L(f )y,L(f ′)y). So we have derived a property of
lifted functions L(f ) and L(f ′) from the properties of the guarded versions f
and f ′. This is a standard pattern. Using Löb induction we prove a property
of a function whose result is a “guarded” type and derive the property for
the lifted function.

For example we can lift the zipWith function from guarded streams to
coinductive streams and prove that it preserves commutativity, using the re-
sult on guarded streams of Section 7.3.

7.6 Soundness

gDTT can be shown to be sound with respect to a denotational model inter-
preting the type theory. The model is a refinement of [28]. Here we provide
some intuition for the semantics of delayed substitutions, we just describe
how to interpret the rule

x : A ` B type ` t : .A

` . [x � t] .B type
(7.7)

in the case where we only have one clock available.
The subsystem of gDTT with only one clock can be modelled in the cat-

egory S , known as the topos of trees [22], the presheaf category over the
first infinite ordinal ω. The objects X of S are families of sets X1,X2, . . . in-
dexed by the positive integers, together with families of restriction functions
rXi : Xi+1→ Xi indexed similarly. There is a functor I : S → S which maps an
object X to the object

1 X1 X2 X3 · · ·! rX1 rX2

where ! is the unique map into the terminal object.
In this model, a closed type A is interpreted as an object of S and the

type x : A ` B type is interpreted as an indexed family of sets Bi(a), for a
in Ai together with maps rBi (a) : Bi+1(a) → Bi(r

A
i (a)). The term t in (7.7) is



262 Guarded Dependent Type Theory with Coinductive Types

interpreted as a morphism t : 1 → .A so ti(∗) is an element of Ai (here we
write ∗ for the element of 1).

The type ` . [x � t] .B type is then interpreted as the object X, defined by

X1 = 1 Xi+1 = Bi(ti+1(∗)).

Notice that the delayed substitution is interpreted by substitution (reindex-
ing) in the model; the change of the index in the model (Bi is reindexed along
ti+1(∗)) corresponds to the delayed substitution in the type theory. Further
notice that if B does not depend on x, then the interpretation of

` . [x � t] .B type

reduces to the interpretation .B, which is defined to be I applied to the in-
terpretation of B.

The above can be generalised to work for general contexts and sequences
of delayed substitutions, and one can then validate that the judgemental
equality rules do indeed hold in this model.

7.7 Related Work

Birkedal et al. [22] introduced dependent type theory with the . modality,
with semantics in the topos of trees. The guardedness requirement was ex-
pressed using the syntactic check that every occurrence of a type variable
lies beneath a .. This requirement was subsequently refined by Birkedal
and Møgelberg [18], who showed that guarded recursive types could be con-
structed via fixed-points of functions on universes. However, the rules con-
sidered in these papers do not allow one to apply terms of type .(Π(x : A).B),
as the applicative functor construction ~ was defined only for simple func-
tion spaces. They are therefore less expressive for both programming (con-
sider the covector ones, and function map, of Section 7.3) and proving, not-
ing the extensive use of delayed substitutions in our example proofs. They
further do not consider coinductive types, and so are restricted to causal
functions.

The extension to coinductive types, and hence acausal functions, is due
to Atkey and McBride [11], who introduced clock quantifiers into a simply
typed setting with guarded recursion. Møgelberg [71] extended this work to
dependent types and Bizjak and Møgelberg [28] refined the model further to
allow clock synchronisation.

Clouston et al. [31] introduced the logic Lgλ to prove properties of terms
of the (simply typed) guarded λ-calculus, gλ. This allowed proofs about
coinductive types, but not in the integrated fashion supported by dependent
type theories. Moreover it relied on types being “total”, a property that in a
dependently typed setting would entail a strong elimination rule for ., which
would lead to inconsistency.
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Sized types [50] have been combined with copatterns [1] as an alterna-
tive type-based approach for modular programming with coinductive types.
This work is more mature than ours with respect to implementation and the
demonstration of syntactic properties such as normalisation, and so further
development of gDTT is essential to enable proper comparison. One advan-
tage of gDTT is that the later modality is useful for examples beyond coin-
duction, and beyond the utility of sized types, such as the guarded recursive
domain equations used to model program logics [91].

7.8 Conclusion and Future Work

We have described the dependent type theory gDTT. The examples we have
detailed show that gDTT provides a setting for programming and proving
with guarded recursive and coinductive types.

In future work we plan to investigate an intensional version of the type
theory and construct a prototype implementation to allow us to experiment
with larger examples. Preliminary work has suggested that the path type
of cubical type theory [32] interacts better with the new constructs of gDTT
than the ordinary Martin-Löf identity type.

Finally, we are investigating whether the generalisation of applicative
functors [69] to apply over dependent function spaces, via delayed substitu-
tions, might also apply to examples quite unconnected to the later modality.
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00442, both from The Danish Council for Independent Research for the Nat-
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7.A Typing Rules

Definitional type equalities:

Γ ,Γ ′ `∆ A type `∆ ξ[x � t] : Γ
κ
_ Γ ′ ,x : B

Γ `∆
κ
.ξ [x � t] .A ≡ κ.ξ.A

TyEq-.-Weak

Γ ,Γ ′ ,x : B,y : C,Γ ′′ `∆ A type

`∆ ξ [x � t,y � u]ξ ′ : Γ
κ
_ Γ ′ ,x : B,y : C,Γ ′′ x not free in C

Γ `∆
κ
.ξ [x � t,y � u]ξ ′ .A ≡ κ.ξ [y � u,x � t]ξ ′ .A

TyEq-.-Exch

Γ `∆
κ
.ξ [x � nextκ ξ.t] .A type

Γ `∆
κ
.ξ [x � nextκ ξ.t] .A ≡ κ.ξ.A[t/x]

TyEq-Force

∆′ ⊆ ∆ `∆′ κ Γ ,Γ ′ `∆ A : U∆′ `∆ ξ : Γ
κ
_ Γ ′

Γ `∆ El(̂.κ (nextκ ξ.A)) ≡ κ.ξ.El(t)
TyEq-El-.

`∆ ξ : Γ
κ
_ Γ ′ Γ ,Γ ′ `∆ t : A Γ ,Γ ′ `∆ s : A

Γ `∆ Idκ
.ξ.A

(nextκ ξ.t,nextκ ξ.s) ≡ κ.ξ.IdA(t, s)
TyEq-.

Definitional term equalities:

Γ ,Γ ′ `∆ u : A `∆ ξ [x � t] : Γ
κ
_ Γ ′ ,x : B

Γ `∆ nextκ ξ [x � t] .u ≡ nextκ ξ.u :
κ
.ξ.A

TmEq-Next-Weak

Γ `∆ t :
κ
.ξ.A

Γ `∆ nextκ ξ [x � t] .x ≡ t :
κ
.ξ.A

TmEq-Next-Var

Γ ,Γ ′ ,x : B,y : C,Γ ′′ `∆ t : A

`∆ ξ [x � t,y � u]ξ ′ : Γ
κ
_ Γ ′ ,x : B,y : C,Γ ′′

x not free in C

Γ `∆ nextκ ξ [x � t,y � u]ξ ′ .v ≡ nextκ ξ [y � u,x � t]ξ ′ .v :
κ
.ξ [y � u,x � t]ξ ′ .A

TmEq-Next-Exch

Γ `∆ nextκ ξ [x � nextκ ξ.t] .u :
κ
.ξ [x � nextκ ξ.t] .A

Γ `∆ nextκ ξ [x � nextκ ξ.t] .u ≡ nextκ ξ.u[t/x] :
κ
.ξ.A[t/x]

TmEq-Force

Γ `∆ fixκ x.t : A

Γ `∆ fixκ x.t ≡ t[nextκ (fixκ x.t) /x] : A
TmEq-Fix
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7.B Examples

In this section we provide detailed explanations of typing derivations of ex-
amples described in Section 7.3.

zipWithκ preserves commutativity

The first proof is the simplest. We will define the standard zipWithκ function
on streams and show that if a binary function f is commutative, then so is
zipWithκ f .

The zipWithκ : (A→ B→ C)→ StrκA→ StrκB→ StrκC is defined by guarded
recursion as

zipWithκ f , fixκϕ.λ(xs,ys : StrκA).

consκ (f (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys)

Note that none of the new generalised . rules of gDTT are needed to type this
function; this is a function on simple types.

Where we need dependent types is, of course, to state and prove proper-
ties. To prove our example, that commutativity of f implies commutativity
of zipWithκ f , means we must show that the type

Π(f : A→ A→ B). (Π(x,y : A).IdB(f xy,f y x))→

Π
(
xs,ys : StrκA

)
.IdStrκB(zipWithκ f xsys,zipWithκ f ysxs).

is inhabited. We will explain how to construct such a term, and why it is
typeable in gDTT. Although this construction might appear complicated at
first, the actual proof term that we construct will be as simple as possible.

Let f : A→ A→ B be a function and say we have a term

c :Π(x,y : A).IdB(f xy,f y x)

witnessing commutativity of f . We now wish to construct a term of type

Π
(
xs,ys : StrκA

)
.IdStrκC(zipWithκ f xsys,zipWithκ f ysxs)

We do this by guarded recursion. To this end we assume

ϕ :
κ
.
(
Π

(
xs,ys : StrκA

)
.IdStrκB(zipWithκ f xsys,zipWithκ f ysxs)

)
and take xs,ys : StrκA. Using c (the proof that f is commutative) we first have
c (hdκ xs) (hdκ ys) of type

IdB(f (hdκ xs) (hdκ ys), f (hdκ ys) (hdκ xs))
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and because we have by definition of zipWithκ

hdκ (zipWithκ f xsys) ≡ f (hdκ xs) (hdκ ys)

hdκ (zipWithκ f ysxs) ≡ f (hdκ ys) (hdκ xs)

we see that c (hdκ xs) (hdκ ys) has type

IdB(hdκ (zipWithκ f xsys),hdκ (zipWithκ f ysxs)).

To show that the tails are equal we use the induction hypothesis ϕ. The terms
tlκ xs and tlκ ys are of type

κ
.StrκA, so we first have ϕ κO tlκ xs of type

κ
. [xs � tlκ xs] .

(
Π

(
ys : StrκA

)
.IdStrκC

(
zipWithκ f xsys,
zipWithκ f ysxs

))
Note the appearance of the generalised ., carrying a delayed substitution.
Because the variable xs does not appear in

κ
.StrκA we may apply the weakening

rule TmEq-Next-Weak to derive

tlκ ys :
κ
. [xs � tlκ xs] .StrκA

Hence we may use the derived applicative rule to have ϕ κO tlκ xs κO tlκ ys of
type

κ
.

[
xs � tlκ xs
ys � tlκ ys

]
.IdStrκC(zipWithκ f xsys,zipWithκ f ysxs)

and which is definitionally equal to the type

Idκ
.StrκC


nextκ

[
xs � tlκ xs
ys � tlκ ys

]
.zipWithκ f xsys,

nextκ
[
xs � tlκ xs
ys � tlκ ys

]
.zipWithκ f ysxs

.
We also compute

tlκ (zipWithκ f xsys) ≡ nextκ(zipWithκ f ) κO tlκ xs κO tlκ ys

≡ nextκ
[
xs � tlκ xs
ys � tlκ ys

]
.(zipWithκ f xsys)

and

tlκ (zipWithκ f ysxs) ≡ nextκ
[
ys � tlκ ys
zs � tlκ xs

]
.(zipWithκ f ysxs).
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Using the exchange rule TmEq-Next-Exch we have the equality

nextκ
[
ys � tlκ ys
xs � tlκ xs

]
.(zipWithκ f xsys)

≡

nextκ
[
xs � tlκ xs
ys � tlκ ys

]
.(zipWithκ f xsys).

Putting it all together we have shown that the term ϕ κOtlκ xs κOtlκ ys has type

Idκ
.StrκB

(tlκ (zipWithκ f xsys), tlκ (zipWithκ f ysxs))

which means that the term

fixκϕ.λ
(
xs,ys : StrκA

)
.pη (c (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys)

has type Π
(
xs,ys : StrκA

)
.IdStrκB(zipWithκ f xsys,zipWithκ f ysxs).

Notice that the resulting proof term could not be simpler than it is. In
particular, we do not have to write delayed substitutions in terms, but only
in the intermediate types.

An example with covectors

The next example is more sophisticated, as it will involve programming and
proving with a data type that, unlike streams, is dependently typed. In par-
ticular, we will see that the generalised later, carrying a delayed substitution,
is necessary to type even the most elementary programs.

Covectors are to colists (potentially infinite lists) as vectors are to lists. To
define guarded covectors we first need guarded co-natural numbers. This is
the type satisfying

CoNκ ≡ 1 +
κ
.CoNκ .

where binary sums are encoded in the type theory in a standard way. The
definition in gDTT is CoNκ , El

(
fixκϕ.(̂1 +̂ .̂κϕ)

)
.

Using CoNκ we define the type of covectors of type A, written CoVecκA,
as a CoNκ-indexed type satisfying

CoVecκA(inl〈〉) ≡ 1

CoVecκA(inr(nextκm)) ≡ A× κ.(CoVecκAm)

In gDTT we first define ̂CoVecκA

̂CoVecκA , fixκϕ.λ(n : CoNκ).casenof

inlu⇒ 1̂

inrm⇒ A ×̂ .̂κ(ϕ κOm).
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and then CoVecκAn , El( ̂CoVecκAn). In the examples we will not distinguish

between CoVecκA and ̂CoVecκA. In the above ϕ has type
κ
.(CoNκ → U∆,κ) and

inside the branches, u has type 1 and m has type
κ
.CoNκ, which is evident

from the definition of CoNκ. As an example of covectors, we define ones of
typeΠ(n : CoNκ).CoVecκ

N
nwhich produces a covector of any length consist-

ing only of ones:

ones ,fixκϕ.λ(n : CoNκ).casenof

inlu⇒ inl〈〉
inrm⇒ 〈1,ϕ κOm〉 .

When checking the type of this program, we need the generalised later. The
type of the recursive call is

κ
.(Π(n : CoNκ).CoVecκ

N
n), the type ofm is

κ
.CoNκ,

and therefore the type of the subterm ϕ κOm must be

κ
. [n�m] .Π(n : CoNκ).CoVecκ

N
n.x

We now aim to define the function map on covectors and show that it
preserves composition. Given two types A and B the map function has type

map : (A→ B)→Π(n : CoNκ).CoVecκAn→ CoVecκBn.

and is defined by guarded recursion as

mapf ,fixκϕ.λ(n : CoNκ).

casenof

inlu⇒ λ(x : 1).x

inrm⇒ λ
(
p : A× κ. [n�m] .(CoVecκAn)

)
.

〈f (π1p) ,ϕ κOm κO (π2p)〉

Let us see why the definition has the correct type. First, the types of subterms
are

ϕ :
κ
.(Π(n : CoNκ).CoVecκAn→ CoVecκBn)

u : 1

m :
κ
.CoNκ

Let C = CoVecκAn → CoVecκBn, and write C(t) for C[t/n]. By the definition
of CoVecκA and CoVecκB we have C(inlu) ≡ 1→ 1, and so λ(x : 1).x has type
C(inlu).

By the definition of CoVecκA we have

CoVecκA(inrm) ≡ A×El
(̂
.κ(nextκ(CoVecκA) κOm)

)
≡ A× κ. [n�m] .

(
CoVecκAn

)
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and analogously for CoVecκB(inrm). Hence the type C(inrm) is convertible to(
A× κ. [n�m] .

(
CoVecκAn

))
→

(
B× κ. [n�m] .

(
CoVecκBn

))
.

Further, using the derived applicative rule we have

ϕ κOm :
κ
. [n�m] .C(n)

and because π2p in the second branch has type

κ
. [n�m] .(CoVecκAn)

we may use the (simple) applicative rule again to get

ϕ κOm κO (π2p) :
κ
. [n�m] .(CoVecκBn)

which allows us to type

λ
(
p : A× κ. [n�m] .(CoVecκAn)

)
.〈f (π1p) ,ϕ κOm κOπ2(p)〉

with type C(inrm). Notice that we have made essential use of the more gen-
eral applicative rule to apply ϕ κOm to π2p. Using the strong (dependent)
elimination rule for binary sums we can type the whole case construct with
type C(n), which is what we need to give map the desired type.

Now we will show that map so defined satisfies a basic property, namely
that it preserves composition in the sense that the type (in the context where
we have types A, B and C)

Π(f : A→ B)(g : B→ C)(n : CoNκ)(xs : CoVecκAn).

IdCoVecκC n(mapg n(mapf nxs),map(g ◦ f )nxs)
(7.8)

is inhabited. The proof is, of course, by Löb induction.
First we record some definitional equalities which follow directly by un-

folding the definitions

mapf (inlu)x ≡ x
mapf (inrm)xs ≡

〈
f (π1xs) ,nextκ(mapf ) κOm κOπ2(xs)

〉
≡ 〈f (π1xs),nextκ

[
n�m
ys � π2xs

]
.(mapf nys)〉

and so iterating these two equalities we get

mapg (inlu) (mapf (inlu)x) ≡ x
mapg (inrm) (mapf (inrm)xs) ≡ 〈g(f (π1xs)), s〉
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where s is the term

nextκ


n�m

zs � nextκ
[
n�m
ys � π2xs

]
.(mapf nys)

 .(mapg nzs)

which is convertible, by the rule TmEq-Force, to the term

nextκ
[
n�m
ys � π2xs

]
.(mapg n (mapf nys)).

Similarly we have

map(g ◦ f ) (inlu)x ≡ x

and map(g ◦ f ) (inrm)xs convertible to〈
g(f (π1xs)),nextκ

[
n�m
ys � π2xs

]
.(map(g ◦ f )nys)

〉
.

Now let us get back to proving property (7.8). Take f : A→ B, g : B→ C and
assume

ϕ :
κ
.Π(n : CoNκ)(xs : CoVecκAn).IdCoVecκC n(mapg n(mapf nxs),map(g ◦ f )nxs)

We take n : CoNκ and write

P (n) =Π(xs : CoVecκAn).IdCoVecκC n(mapg n(mapf nxs),map(g ◦ f )nxs).

Then similarly as in the definition of map and the definitional equalities for
map above we compute

P (inlu) ≡Π(xs : 1).Id1(xs,xs)

and so we have λ(xs : 1).r1 xs of type P (inlu).
The other branch (when n = inrm) is of course a bit more complicated. As

before we have

CoVecκA(inrm) ≡ A× κ. [n�m] .CoVecκAn (7.9)

So take xs of type CoVecκA(inrm). We need to construct a term of type

IdCoVecκC n(mapg n(mapf nxs),map(g ◦ f )nxs).

First we have rC g(f (π1xs)) of type IdC(g(f (π1xs)), g(f (π1xs))). Then because
m is of type

κ
.CoNκ we can use the induction hypothesis ϕ to get ϕ κOm of

type

κ
. [n�m] .Π(xs : CoVecκAn).IdCoVecκC n(mapg n(mapf nxs),map(g ◦ f )nxs).
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Using (7.9) we have π2xs of type
κ
. [n�m] .CoVecκAn and so we can use the

applicative rule again to give ϕ κOm κOπ2xs the type

κ
.

[
n�m
xs � π2xs

]
.IdCoVecκC n

(
mapg n(mapf nxs),
map(g ◦ f )nxs

)
which by the rule TyEq-. is the same as

IdD


nextκ

[
n�m
xs � π2xs

]
. (mapg n(mapf nxs)) ,

nextκ
[
n�m
xs � π2xs

]
. (map(g ◦ f )nxs)


where D is the type

κ
. [n�m] .CoVecκC n. Thus we can give to the term

λ(xs : CoVecκA(inrm)).pη (rC g(f (π1xs))) (ϕ κOm κOπ2xs)

the type P (inrm). Using the dependent elimination rule for binary sums we
get the final proof of property (7.8) as the term

λ(f : A→ B)(g : B→ C).fixκϕ.λ(n : CoNκ).

casenof

inlu⇒ λ(xs : 1).r1 xs

inrm⇒ λ(xs : CoVecκA(inrm)).pη (rC g(f (π1xs))) (ϕ κOm κOπ2xs)

which is as simple as could be expected.

Lifting predicates to streams

Let P : A→U∆ be a predicate on type A and κ a clock variable not in ∆. We
can define a lifting of this predicate to a predicate P κ on streams of elements
of type A. The idea is that P κxs will hold precisely when P holds for all
elements of the stream. However we do not have access to all the element
of the stream at the same time. As such we will have P κxs if P holds for the
first element of the stream xs now, and P holds for the second element of the
stream xs one time step later, and so on. The precise definition uses guarded
recursion:

P κ : StrκA→U∆,κ
P κ , fixκϕ.λ

(
xs : StrκA

)
.P (hdκ xs) ×̂ .̂κ (ϕ κO tlκ xs) .

In the above term the subtermϕ has type
κ
.
(
StrκA→U∆,κ

)
and so because tlκ xs

has type
κ
.StrκA we may formϕ κOtlκ xs of type

κ
.U∆,κ and so finally .̂κ(ϕ κOtlκ xs)

has type U∆,κ as needed.
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To see that this makes sense, we have for a stream xs : StrκA
El(P κ xs) ≡ El(P (hdκ xs))×El (̂.κ (nextκ P κ κO tlκ xs)) .

Using delayed substitution rules we have

nextκ P κ κO tlκ xs ≡ nextκ [xs � tlκ xs] . (P κ xs)

which gives rise to the type equality

El(̂.κnextκ P κ κO tlκ xs) ≡ El (̂.κnextκ [xs � tlκ xs] . (P κ xs)) .

Finally, the type equality rule TyEq-El-. gives us

El (̂.κnextκ [xs � tlκ xs] . (P κ xs)) ≡ κ
. [xs � tlκ xs] .El(P κ xs).

All of these together then give us the type equality

El(P κ xs) ≡ El(P (hdκ xs))× κ. [xs � tlκ xs] .El(P κ xs).

And so if xs = consκ x (nextκ ys) we can further simplify, using rule TyEq-

Force, to get
κ
. [xs � nextκ ys] .El(P κ xs) ≡ κ. (El(P κ xs)[ys/xs]) ≡ κ.El(P κ ys)

which then gives El(P κxs) ≡ El(P x)× κ.El(P κ ys) which is in accordance with
the motivation given above.

Because P κ is defined by guarded recursion, we prove its properties by
Löb induction. In particular, we may prove that if P holds on A then P κ

holds on StrκA, i.e., that the type

(Π(x : A).El(P x))→
(
Π

(
xs : StrκA

)
.El(P κ xs)

)
is inhabited (in a context where we have a type A and a predicate P ). Take
p : Π(x : A).El(P x), and since we are proving by Löb induction we assume
the induction hypothesis later

ϕ :
κ
.
(
Π

(
xs : StrκA

)
.El(P κ xs)

)
.

Let xs : StrκA be a stream. By definition of P κ we have the type equality

El(P κxs) ≡ El(P hdκ xs)× κ. [xs � tlκ xs] .El(P κ xs)

Applying p to hdκ xs gives us the first component

p(hdκ xs) : El (P (hdκ xs))

and applying the induction hypothesis ϕ we have

ϕ κO tlκ xs :
κ
. [xs � tlκ xs] .El(P κ xs)

Thus combining this with the previous term we have the proof of the lifting
property as the term

λ (p :Π(x : A).El(P x)) .

fixκϕ.λ
(
xs : StrκA

)〈
p (hdκ xs) ,ϕ κO tlκ xs

〉
.
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7.C Example Programs with Coinductive Types

Let A be some small type in clock context ∆ and κ, a fresh clock variable. Let
StrA = ∀κ.StrκA. We can define head, tail and cons functions

hd : StrA→ A

hd , λxs.hdκ0 (xs[κ0])

tl : StrA→ StrA
tl , λxs.prevκ. tlκ (xs[κ])

cons : A→ StrA→ StrA
cons , λx.λxs.Λκ.consκ x (nextκ (xs[κ])) .

With these we can define the acausal ‘every other’ function eoκ that re-
moves every second element of the input stream. This is acausal because the
second element of the output stream is the third element of the input. There-
fore to type the function we need to have the input stream always available,
necessitating the use clock quantification. The function eoκ is

eoκ : StrA→ StrκA
eoκ , fixκϕ.λ (xs : StrA) .

consκ(hdxs) (ϕ κOnextκ ((tl (tlxs)))) .

i.e., we return the head immediately and then recursively call the function
on the stream with the first two elements removed. Note that the result is a
guarded stream, but we can easily strengthen it and define eo of type StrA→
StrA as eo , λxs.Λκ.eoκ xs.

A more interesting type is the type of covectors, which is a refinement of
the guarded type of covectors defined in Section 7.3. First we define the type
of co-natural numbers CoN as

CoN = ∀κ.CoNκ .

It is easy to define 0 and succ as

0 : CoN

0 ,Λκ. inl〈〉
succ : CoN→ CoN

succ , λn.Λκ. inr(nextκ (n[κ]))
.

Next, we will use type isomorphisms to define a transport function comCoN

of type comCoN : CoN→ 1 + CoN as

comCoN , λn.casecom+nof

inlu⇒ inlu[κ0]

inrn⇒ inrprevκ.n[κ]
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This function satisfies term equalities

comCoN0 ≡ inl〈〉 comCoN(succn) ≡ inrn. (7.10)

Using this we can define type of covectors CoVecA as

CoVecA n , ∀κ.CoVecκA n

where CoVecκA : CoN→U∆,κ is the term

fixκϕ.λ (n : CoN) .casecomCoNnof

inl ⇒ 1̂

inrn⇒ A×̂̂.κ (ϕ κO (nextκ n)) .

Notice the use of comCoN to transport n of type CoN to a term of type 1+CoN
which we can case analyse. To see that this type satisfies the correct type
equalities we need some auxiliary term equalities which follow from the way
we have defined the terms.

Using term equalities (7.4) and (7.5) we can derive the (almost) expected
type equalities

CoVecA 0 ≡ ∀κ.1

CoVecA (succn) ≡ ∀κ.
(
A× κ. (CoVecκ n)

) (7.11)

and using the type isomorphisms we can extend these type equalities to type
isomorphisms

CoVecA 0 � 1

CoVecA (succn) � A×CoVecA n

which are the expected type properties of the covector type.
A simple function we can define is the tail function

tl : CoVecA(succn)→ CoVecA
tl , λv.prevκ.π2 (v[κ]) .

Note that we have used (7.11) to ensure that tl is type correct.
Next, we define the map function on covectors.

map : (A→ B)→Π(n : CoN).CoVecAn→ CoVecBn

mapf = λn.λxs.Λκ.mapκ f n (xs[κ])

where mapκ is the function of type

mapκ : (A→ B)→Π(n : CoN).CoVecκAn→ CoVecκBn
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defined as

λf .fixκϕ.λn.casecomCoNnof

inl ⇒ λv.v

inrn⇒ λv.
〈
f (π1v),ϕ κO (nextκ n) κOπ2(v)

〉
.

Let us see that this has the correct type. Let DA(x) (and analogously DB(x))
be the type

DA(x) ,

casexof

inl ⇒ 1̂

inrn⇒ A×̂̂.κ
((

nextκCoVecκA
)
κO (nextκ n)

)
.

where x is of type 1 + CoN. Using this abbreviation we can write the type of
mapκ as

(A→ B)→Π(n : CoN).DA(comCoNn)→DB(comCoNn).

Using this it is straightforward to show, using the dependent elimination rule
for sums, as we did in Section 7.3, that mapκ has the correct type. Indeed we
have DA(inlz) ≡ 1 and DA(inrn) ≡ A× κ. (CoVecAn).

7.D Type Isomorphisms in Detail

• If κ < A then ∀κ.A � A. The terms are λx.x [κ0] and λx.Λκ.x. The rule
TmEq-∀-fresh is crucially needed to show that they constitute a type
isomorphism.

• If κ < A then ∀κ.Π(x : A).B �Π(x : A).∀κ.B. The terms are

λz.λx.Λκ.z[κ] x

of type ∀κ.Π(x : A).B→Π(x : A).∀κ.B and

λz.Λκ.λx.(zx)[κ]

of type Π(x : A).∀κ.B→∀κ.Π(x : A).B.

• ∀κ.Σ (x : A)B � Σ (y : ∀κ.A) (∀κ.B [y[κ]
/
x]). The terms are

λz.〈Λκ.π1 (z[κ]) ,Λκ.π2 (z[κ])〉

of type

∀κ.Σ (x : A)B→ Σ (y : ∀κ.A) (∀κ.B [y[κ]
/
x])

and

λz.Λκ.〈(π1 z)[κ] , (π2 z)[κ]〉

of the converse type.
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• ∀κ.A � ∀κ.κ.A. The terms are

λz.Λκ.nextκ(z[κ])

of type ∀κ.A→∀κ.κ.A and

λz.prevκ. (z[κ])

of the converse type. The β and η rules for prevκ. ensure that this pair
of functions constitutes an isomorphism.

Using these isomorphisms we can construct an additional type isomor-
phism witnessing that ∀κ commutes with binary sums. Recall that we encode
binary coproducts using Σ-types and universes in the standard way. Given
two codes Â and B̂ in some universe U∆ we define

Â+̂B̂ : U∆
Â+̂B̂ , Σ (b : B) ifb then Âelse B̂

and we write A+B for El
(
Â+̂B̂

)
. Suppose that ∆′ ⊆ ∆ and κ is a clock variable

not in ∆. Suppose that Γ `∆ and that we have two codes Â, B̂ satisfying

Γ `∆,κ Â : U∆′ ,κ Γ `∆,κ B̂ : U∆′ ,κ

We start with an auxiliary function comif. Let b be some term of type B.
We then define

comif
b : ∀κ.El

(
ifb then Âelse B̂

)
→ El

(
ifb then ∀̂Λκ.Âelse ∀̂Λκ.B̂

)
comif

b , ifb thenλx.xelseλx.x

which is typeable due to the strong elimination rule for B.
We now define the function com+

com+ : ∀κ.(A+B)→∀κ.A+∀κ.B

com+ , λz.
〈
π1 (z[κ0]) ,comif

π1(z[κ0]) (Λκ.π2 (z[κ]))
〉
.

We need to check that the types are well-formed and the function well-typed.
The side condition Γ `∆ ensures that the types are well-formed. To see that
the function com+ is well-typed we consider the types of subterms.

- The term z has type ∀κ.(A+B).

- The term π1 (z[κ0]) has type B.
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- The term Λκ.π2 (z[κ]) has type

∀κ.El
(
ifπ1 (z[κ]) then Âelse B̂

)
- From TmEq-∀-fresh we get π1(z[κ0]) ≡ π1(z[κ]). Indeed, the term

Λκ.π1(z[κ])

has type B, which does not contain κ, and the required equality follows
from TmEq-∀-fresh and the β rule for clock quantification.

- Thus the term Λκ.π2 (z[κ]) has type

∀κ.El
(
ifπ1 (z[κ0]) then Âelse B̂

)
- And so the term

comif
π1(z[κ0])Λκ.π2 (z[κ])

has type

El
(
ifπ1 (z[κ0]) then ∀̂Λκ.Âelse ∀̂Λκ.B̂

)
which is exactly the type needed to typecheck the whole term.

For the term com+ we can derive the following definitional term equali-
ties.

com+ (Λκ. inl t) ≡ inlΛκ.t

com+ (Λκ. inr t) ≡ inrΛκ.t
(7.12)

There is also a canonical term of type

∀κ.A+∀κ.B→∀κ.(A+B)

defined as

λz.Λκ.casezof

inla⇒ inl (a[κ])

inlb⇒ inl (b[κ]).

This term is inverse to com+, although we require equality reflection to show
that the two functions are inverses to each other. Without equality reflec-
tion we can only prove they are inverses up to propositional equality. The
isomorphisms defined previously do not require equality reflection.
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Cubical type theory: a constructive interpretation of the univalence ax-

iom.
Under submission, available at http://www.math.ias.edu/

˜amortberg/papers/cubicaltt.pdf, 2015.
263

[33] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith.

Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.
ISBN 0-13-451832-2.
248

[34] Thierry Coquand.
Infinite objects in type theory.
In TYPES, pages 62–78, 1993.
3, 148, 248
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[89] Filip Sieczkowski, Aleš Bizjak, and Lars Birkedal.
ModuRes: A Coq library for modular reasoning about concurrent

higher-order imperative programming languages.
In Interactive Theorem Proving, volume 9236 of Lecture Notes in Computer

Science, pages 375–390. Springer International Publishing, 2015.
30



Bibliography 291

[90] Michael B Smyth and Gordon D Plotkin.
The category-theoretic solution of recursive domain equations.
SIAM Journal on Computing, 11(4):761–783, 1982.
6, 7

[91] Kasper Svendsen and Lars Birkedal.
Impredicative concurrent abstract predicates.
In Zhong Shao, editor, Programming Languages and Systems, volume

8410 of Lecture Notes in Computer Science, pages 149–168. Springer
Berlin Heidelberg, 2014.

ISBN 978-3-642-54832-1.
4, 28, 219, 263

[92] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
http://homotopytypetheory.org/book, Institute for Advanced Study,

2013.
254

[93] Aaron Turon, Derek Dreyer, and Lars Birkedal.
Unifying refinement and hoare-style reasoning in a logic for higher-

order concurrency.
In Proceedings of the 18th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’13, pages 377–390, New York, NY,
USA, 2013. ACM.

ISBN 978-1-4503-2326-0.
4, 10

[94] N. H. Williams.
On grothendieck universes.
Compositio Mathematica, 21(1):1–3, 1969.
201

http://homotopytypetheory.org/book

	Abstract
	Resumé
	Acknowledgements
	Contents
	Overview
	Introduction
	Background
	Abstracting Step-indexing
	Guarded Recursion and Coinductive Types
	Outline of the Dissertation
	Open Problems
	List of Publications
	Notations


	Publications
	Step-Indexed Logical Relations for Probability
	Introduction
	The Language 
	Observations and Biorthogonality
	Logical, CIU and Contextual Approximation Relations
	Examples
	Extension with References
	Conclusion
	Language Definitions and Properties
	Probability of Termination
	Distributions
	Further Examples

	A Model of Countable Nondeterminism in Guarded Type Theory
	Introduction
	The Logic 
	The Language 
	Logical Relation
	The Model for the Logic
	The Topos of Sheaves over the first uncountable ordinal
	The Model of a Language with Countable Choice
	View From the Outside

	Programming and Reasoning with Guarded Recursion for Coinductive Types
	Introduction
	Guarded lambda-calculus
	Denotational Semantics and Normalisation
	Logic for Guarded Lambda Calculus
	Behavioural Differential Equations in the Guarded Lambda Calculus
	Discussion
	Proofs about the Denotational Semantics and Normalisation
	Example Proofs in the Logic
	Sums
	Proof of Definability of Solutions of Behavioural Differential Equations in Guarded Lambda Calculus
	About Total and Inhabited Types

	A Model of Guarded Recursion with Clock Synchronisation
	Introduction
	The Basics of the New Model
	The Later Functors
	Clock Quantification
	Universes
	Discussion

	A Model of Guarded Recursion via Generalised Equilogical Spaces
	Introduction
	Guarded Dependent Type Theory
	GuardedEqu
	Continuity
	Discussion

	Guarded Dependent Type Theory with Coinductive Types
	Introduction
	Guarded Dependent Type Theory
	Examples
	Coinductive Types
	Example Programs with Coinductive Types
	Soundness
	Related Work
	Conclusion and Future Work
	Typing Rules
	Examples
	Example Programs with Coinductive Types
	Type Isomorphisms in Detail

	Bibliography


