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1 The topos Sh (ω1)

We first describe the topos of sheaves over ω1, the first uncountable ordinal. More precisely,
we consider ω1 as a topological space equipped with the Alexandrov topology. Thus the topos
Sh (ω1) is a full subcategory of the category PSh (ω1 + 1), since the opens of ω1 are exactly the
downwards closed subsets of ω1 which in turn correspond precisely to ω1 + 1 (by von Neumann’s
construction of ordinals, they are exactly ω1 + 1). We write 0 for the first ordinal. So objects
are of the form

X(0) X(1) · · · X(ω) X(ω + 1) · · ·

More precisely the objects of Sh (ω1) are continuous functors from (ω1 + 1)op to Set and mor-
phisms are natural transformations.

Sh (ω1) is a topos. The inclusion functor i : Sh (ω1)→ PSh (ω1 + 1) has a left adjoint a, the
associated sheaf functor. Limits and exponentials in Sh (ω1) are computed as in PSh (ω1 + 1), i.e.
limits are pointwise and exponentialXY is given at stage ν as HomSh(ω1) (Homω1+1 (·, ν)× Y,X).
Colimits, however, are not constructed as in presheaves, but are computed first as in presheaves
followed by an application of the a functor.

We denote the lattice of subobjects of an object X by Sub (X) and we denote reindexing
along f : X → Y by f∗ : Sub (Y ) → Sub (X). Since Sh (ω1) is a topos, each subobject lattice
is a complete Heyting algebra. Further, we can show that each subobject lattice is in fact a
bi-Heyting algebra, that is, a Heyting algebra with a \ operation that is left adjoint to union,
i.e. X \ Y ≤ Z ↔ X ≤ Y ∨Z. The existence of \ can be shown by using explicit descriptions of
operations on the subobject lattice below. This makes Sh (ω1) a bi-Heyting topos [8].

Subobject classifier The subobject classifier Ω is given by closed sieves, which are exactly
the maximal sieves. More precisely the subobject classifier at ν is given by sieves S such that∨
S ∈ S. These sieves therefore correspond to ordinals smaller or equal to ν. Explicitly

Ω(ν) =
{
β
∣∣ β ≤ ν}

(note that von Neumann’s construction of ordinals gives Ω(ν) = ν + 1).
The restriction maps are given by minimum, i.e.

rβν : Ω(β)→ Ω(ν)

rβν (γ) = min{β, ν}

and the map true : 1→ Ω maps ∗ to the maximal sieve

trueν = ν.

Note that this is different from the construction of the subobject classifier for presheaves, where
Ω(ν) is all the sieves on ν, including the empty sieve.

Given a subobject m : A ≤ X the characteristic map χm : X → Ω is given by

χmν (x) =
∨{

β ≤ ν
∣∣ m−1

β

[
x|β
]
6= ∅
}

i.e. (if we assume A(ν) ⊆ X(ν), which we are allowed to)

χmν (x) =
∨{

β ≤ ν
∣∣ x|β ∈ A(β)

}
NB: The supremum of an empty set is 0, the first ordinal.
Some of the properties later will not hold for all the sheaves but only for a certain subset.
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Definition 1.0.1. A sheaf X is total if the restriction maps are surjections. This is the same
as saying that the nextX defined is internally surjective.

A way to think of totality is by thinking of ordinals as time with smaller ordinals being the
future. Then X being total means that elements at any stage ν are only those that have evolved
from some previous stages. They did not just suddenly appear.

1.1 Relationship to Set

The global elements geometric morphism ∆ ` Γ : Sh (ω1) → Set is an essential geometric
morphism. That is, there is an adjoint triple

Π1 a ∆ a Γ

where Π1,Γ : Sh (ω1)→ Set and ∆ : Set→ Sh (ω1) are given as follows

Π1(X) = X(1) = colim
ν≤ω1

X(ν)

Γ(X) = HomSh(ω1) (1, X) = lim
ν≤ω1

X(ν)

∆(a)(ν) =

{
1 if ν = 0

a otherwise

∆ is the constant sheaf functor (note that it is not the constant presheaf functor).
The adjunction Π1 a ∆ gives rise to an adjunction between subobject lattices. More precisely

for any set a, there is an adjunction

Πa
1 : SubSh(ω1) (∆(a))→ SubSet (a) : ∆a

where ∆a(b) = ∆(b) and Πa
1(A) = A(1). These adjunctions are natural in the sense that for any

function α : a′ → a we have α∗ ◦Πa
1 = Πa′

1 ◦∆(α)∗, which is easy to check directly.
Thus, ∆ a Γ : Sh (ω1) → Set is an open geometric morphism [6, Definition IX.6.2] which

further means that ∆ preserves models of first-order logic in the sense of [6, Theorem X.3.1].
In practice, this means that whatever predicate on a constant set we define in the internal logic
using only the first-order fragment and other constant relations and predicates will be constant.

Another way to see that ∆ a Γ is an open geometric morphism is by the fact that Sh (1)
(sheaves on a one point space) is isomorphic to the category Set. Since the unique map ω1 → 1
is open, the induced geometric morphism is open. It can easily be seen that the direct image
functor induced by this unique morphism is (isomorphic to) Γ. By uniqueness of adjoints the
inverse image functor must then be (isomorphic to) ∆.

Moreover, Π1 is a logical morphism, meaning it is a cartesian closed functor that preserves
Ω. This is easy to see manually, by computing. However, there is a more general argument
available. It proceeds as follows. The set {0} is an open subset of ω1. Let i : {0} → ω1 be the
inclusion and let i∗ : Sh ({0})→ Sh (ω1) be the direct image functor. Recall that

i∗(F )(U) = F
(
i−1 [U ]

)
and in our particular case we have

i∗(F )(ν) =

{
F (∅) if ν = 0

F ({0}) if ν 6= 0
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Recall that Sh ({0}) is isomorphic to Set with the isomorphism ξ : Set → Sh ({0}) given by
ξ(a)(∅) = 1, ξ(a)({0}) = a and the obvious restriction. Thus we see that ∆ = i∗ ◦ ξ. The inverse
image functor i∗ is left adjoint to i∗. Since we also have ξ ◦ Π1 a ∆ ◦ ξ−1 we have that i∗ is
naturally isomorphic to ξ ◦Π1 or equivalently Π1

∼= ξ−1 ◦ i∗.
Since {0} is an open subset of Sh (ω1) this makes Set (equivalent to) an open subtopos of

Sh (ω1) [5, Section A4.5].
Moreover, we have by [6, Theorem 6, Corollary 7] that Set is equivalent to a category of j-

sheaves for some universal closure operator j. We will see in Section 1.2 that this local operator
is exactly the ¬¬-closure. Thus there exists a geometric morphism e : Set→ Shj (Sh (ω1)) such
that e∗ ◦ a ∼= Π1 and ι ◦ e∗ ∼= ∆ where ι is the inclusion Shj (Sh (ω1))→ Sh (ω1).

Putting all of it together we have Shj (Sh (ω1)) is an open subtopos of Sh (ω1) since it is
equivalent to Set which is equivalent to Sh ({0}). By [5, Proposition 4.5.1] this means that
a : Sh (ω1) → Shj (Sh (ω1)) is a logical functor and since Π1

∼= e∗ ◦ a, with e∗ being part of an
equivalence, which means that it is a logical functor, we have that Π1 is logical.

This means that Π1 preserves validity of formulas in the internal language.

1.2 Description of the Heyting algebra structure of the subobject lat-
tices

We give here explicit descriptions of operations on each subobject lattice Sub (X). Let X ∈
Sh (ω1), A,B ∈ Sub (X) and β ≤ ω1. We have

> = X

⊥(β) =

{
1 if β = 0

∅ otherwise

(A ∧B)(β) = A(β) ∩B(β)(∧
i∈I

Ai

)
(β) =

⋂
i∈I

Ai(β)

(A⇒ B)(β) =
{
x ∈ X(β)

∣∣∣ ∀γ ≤ β, x|γ ∈ A(γ)→ x|γ ∈ B(γ)
}

(∨
i∈I

Ai

)
(β) =

{
x ∈ X(β)

∣∣∣ ∨{
γ ≤ β

∣∣ ∃i ∈ I, x|γ ∈ Ai(γ)
}

= β
}

Let further Y ∈ Sh (ω1) and ϕ : X → Y . Then ∃ϕ,∀ϕ : Sub(X) → Sub(Y ) are given as
follows

∃ϕ(A)(β) =
{
y ∈ Y (β)

∣∣∣ ∨{
γ ≤ β

∣∣ ∃a ∈ A(γ), ϕγ(a) = y|γ
}

= β
}

∀ϕ(A)(β) =
{
y ∈ Y (β)

∣∣∣ ∀γ ≤ β, ϕ−1
γ

[
y|γ
]
⊆ A(γ)

}
and ϕ∗ : Sub(Y )→ Sub(X) is given by

ϕ∗(C)(β) =
{
x ∈ X(β)

∣∣∣ ϕβ(x) ∈ C(β)
}

These are standard results from [6, III.8] specialized for a particular space with a particular
topology.
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Using these descriptions it is easy to see that the ¬¬X : Sub (X) → Sub (X) is given as
follows

(¬¬XA)(ν) =

{
1 if ν = 0{
x ∈ X(ν)

∣∣ x|1 ∈ A(1)
}

(intuitively, this says that something is not impossible if it will eventually happen (smaller indices
are the future)). Observe that in fact ¬¬XP = UX → P where UX ≤ X is given as UX(0) = 1,
UX(1) = X(1) and UX(ν) = ∅ otherwise. This means that ¬¬ is an open local operator [5,
Section 4.5].

From these explicit descriptions we can see that ¬¬X arises from the functor ∆◦Π1 as follows.
Let � = ∆ ◦Π1. Note that � a ∆ ◦Γ which means that it preserves all colimits. It is easy to see
that � preserves all limits since they are constructed pointwise. We will also see in Section 1.4
that it has a left adjoint which implies that it preserves all limits. In particular it preserves
monomorphisms, thus subobjects. Hence given a subobject m : A ≤ X, �m : �A ≤ �X.
Further, � is a monad, thus there is a unit ηX : X → �X. It is then easy to see that

¬¬A �A

X �X

�m

ηX

is a pullback diagram. Another way to state this is that ¬¬X : Sub (X)→ Sub (X) is given as
¬¬X(A) = η∗X (�A).

Using this description we can easily see that ¬¬X preserves suprema. Indeed

¬¬X

(∨
i

Ai

)
= η∗X

(
�

(∨
i

Ai

))

and since suprema in Sub (X) are constructed using a coproduct in Sh (ω1) followed by images,
which are constructed using limits and colimits of Sh (ω1), which are preserved by �, we have

= η∗X

(∨
i

�Ai

)

and since η∗X : Sub (X)→ Sub (X) has a right adjoint, ∀ηX functor, it preserves suprema, hence

=
∨
i

η∗X (�Ai) =
∨
i

¬¬XAi.

Note that as in all toposes, ¬¬ is preserved by reindexing functors, i.e. for any ϕ : X → Y ,
ϕ∗ ◦ ¬¬Y = ¬¬X ◦ ϕ∗.

We can also easily compute manually using explicit descriptions of operations above, that
¬¬X does indeed preserve suprema.
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1.3 The � modality

Since ¬¬X preserves suprema it has a right adjoint [2, Corollary 9.32]. We denote this right
adjoint to ¬¬X by �X and define it as

�X(P ) =
∨{

Q
∣∣ ¬¬XQ ≤ P} .

�X is an interior operation on the subobject lattice Sub (X) and �XP it can be characterized
as the greatest element smaller than P that is also ¬¬X closed. The fact that �XP is ¬¬-
closed is proved in Lemma 1.3.1 and the fact that it preserves ¬¬-closed subobjects is proved in
Corollary 1.3.3.

Lemma 1.3.1. For any object X and P ≤ X, ¬¬X�X(P ) = �X(P ).

Proof. By definition of �X we have

¬¬X (�X(P )) = ¬¬X
(∨{

Q
∣∣ ¬¬XQ ≤ P})

and since ¬¬X preserves suprema

=
∨{
¬¬XQ

∣∣ ¬¬XQ ≤ P} =
∨{

Q
∣∣ ¬¬XQ ≤ P} = �X(P )

The second to last equality holds because for each Q, ¬¬XQ ≥ Q and ¬¬X¬¬XQ = ¬¬XQ.

Corollary 1.3.2. For any object X and P ≤ X, �XP ≤ P .

Proof. Since ¬¬X a �X we have �XP ≤ �XP ↔ ¬¬X�XP ≤ P . Since ≤ is reflexive
Lemma 1.3.1 concludes the proof.

Corollary 1.3.3. For any object X and P ≤ X, �X(¬¬XP ) = ¬¬XP .

Proof. For any P , ¬¬X¬¬XP = ¬¬XP . Thus ¬¬X¬¬XP ≤ ¬¬XP . Since �X is right adjoint
to ¬¬X we get ¬¬XP ≤ �X¬¬XP . The other direction follows directly from Corollary 1.3.2.

Corollary 1.3.4. For any object X and P ≤ X, �X(�XP ) = �XP .

Proof. �X(�XP ) ≤ �XP follows from Corollary 1.3.2. The other direction follows from the
fact that �X is right adjoint to ¬¬X and Lemma 1.3.1 since by adjointness we have �XP ≤
�X�XP ↔ ¬¬X�XP ≤ �XP and the right hand side holds by Lemma 1.3.1.

We now state and prove how �X commutes with some other operations on Sub (X). In
particular, it commutes with conjunction, top, bottom and universal quantification.

Proposition 1.3.5. Let X and Y be types, P,Q ∈ Sub (X) and ϕ : X → Y a morphism. The
following hold

1. �X> = >

2. �X⊥ = ⊥

3. �X(P ∧Q) = �XP ∧�XQ

4. �Y (∀ϕP ) = ∀ϕ (�XP ).
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Proof. Since �X is a right adjoint it preserves limits in Sub (X). > and ∧ are limits, therefore
�X necessarily preserves them.

Corollary 1.3.2 shows that �XP ≤ P for any P . In particular, this holds for ⊥ and since ⊥
is the least element of Sub (X), we get �X⊥ = ⊥.

To see �Y (∀ϕP ) = ∀ϕ (�XP ) we use the fact that ∀ϕ is right adjoint to ϕ∗ and that ϕ∗

commutes with ¬¬X . Thus for any R ∈ Sub (Y ) we have

R ≤ �Y (∀ϕP )↔ ¬¬YR ≤ ∀ϕP
↔ ϕ∗ (¬¬YR) ≤ P
↔ ¬¬X (ϕ∗R) ≤ P
↔ ϕ∗R ≤ �XP
↔ R ≤ ∀ϕ (�XP )

Thus picking R to be �Y (∀ϕP ) or ∀ϕ (�XP ) we get both approximations (we could also have
just referenced Yoneda’s lemma here), thus �Y (∀ϕP ) = ∀ϕ (�XP ).

� and substitution In contrast to ¬¬X which is preserved by reindexing functors, �X is not,
that is, for ϕ : Y → X it is not in general the case that �Y ◦ ϕ∗ = ϕ∗ ◦ �X . One direction,
however, does hold.

Proposition 1.3.6. For any ϕ : Y → X, ϕ∗ ◦�X ≤ �Y ◦ ϕ∗. If ϕ is an isomorphism then the
two sides are also equal.

Proof. By definition of �X and the fact that ϕ∗ has a right adjoint we have

ϕ∗(�X(P )) = ϕ∗
(∨{

Q
∣∣ ¬¬XQ ≤ P})

=
∨{

ϕ∗Q
∣∣ ¬¬XQ ≤ P}

≤
∨{

ϕ∗Q
∣∣ ϕ∗ (¬¬XQ) ≤ ϕ∗(P )

}
=
∨{

ϕ∗Q
∣∣ ¬¬Y (ϕ∗Q) ≤ ϕ∗(P )

}
≤
∨{

R
∣∣ ¬¬YR ≤ ϕ∗(P )

}
= �Y (ϕ∗P )

If ϕ were an isomorphism it would preserve and also reflect order and every element of the lattice
would be in the image. Thus the chain can be strengthened to show that in this case �Y (ϕ∗P )
and ϕ∗(�X(P )) are equal.

The fact that �X is not natural in X implies that there is no morphism � : Ω → Ω such
that �X would arise from it, as is the case for ¬¬X . Note that it is not a coincidence that �X
is not natural but a fundamental limitation of interior operations. If �X were natural it would
have to be the identity. More precisely, any operation on the subobject lattices that preserves >
and is deflationary and natural in X must be the identity (provided the category satisfies some
minimal requirements). This is proved in [8, Proposition 4.2] (see also Proposition 4.1 of loc.
cit.).
�X does commute with exchange, however, but in general not with contraction and weaken-

ing. It does commute with weakening in the special case proved in Corollary 1.3.8 below. For
the proof we need the following lemma stating that ¬¬ commutes with ∃π for suitable π.
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Lemma 1.3.7. Let X and Y be types and π : X×Y → X the projection. Then ∃π◦¬¬ ≤ ¬¬◦∃π
always holds. If Y is total the converse also holds.

Proof. ∃π is the left adjoint to π∗. Thus

∃π(¬¬Q) ≤ ¬¬(∃πQ)↔ ¬¬Q ≤ π∗ (¬¬(∃πQ))

↔ ¬¬Q ≤ ¬¬ (π∗(∃πQ))

← Q ≤ π∗(∃πQ)

and the last holds because π∗ ◦ ∃π is a monad, i.e. a closure.
Now suppose Y is total and let Q ∈ Sub (X × Y ). First, let ν be a successor ordinal. Let

x ∈ ¬¬(∃π(Q))(ν). By definition x|1 ∈ ∃π(Q)(1), which further implies there exists y ∈ Y (1),
such that (x|1, y) ∈ Q(1). Since Y is total there exists a y′ ∈ Y (ν), such that y′|1 = y. Thus
(x|1, y′|1) ∈ Q(1) and so (x, y′) ∈ ¬¬Q(ν). This means that x ∈ ∃π(¬¬Q)(ν).

Since this holds for all successor ordinals, it must also hold for limit ordinals (actually, the
same manual proof would also suffice, but it is more complicated to write it down).

The restriction on total objects Y is necessary. Consider any total X and let Y be an object
which at stage at stage 1 is some nonempty set and at greater stages is the empty set. Suppose
P = X × Y , i.e. the top element. Then ∃π(¬¬P )(2) = ∅, however ¬¬(∃π(P ))(2) is not empty
(since X is total).

Corollary 1.3.8. Let π : X×Y → X be the projection. If Y is total (restrictions are surjections)
then π∗ ◦�X = �X×Y ◦ π∗.

Proof. In light of Proposition 1.3.6 we only need to show. π∗ ◦�X ≥ �X×Y ◦ π∗. We have

�X×Y (π∗Q) ≤ π∗(�XQ)↔ ∃π�X×Y (π∗Q) ≤ �XQ
↔ ¬¬ (∃π�X×Y (π∗Q)) ≤ Q
↔ ∃π¬¬ (�X×Y (π∗Q)) ≤ Q
↔ ¬¬ (�X×Y (π∗Q)) ≤ π∗Q
↔ �X×Y (π∗Q) ≤ �X×Y (π∗Q)

Exchange is reindexing by an isomorphism. Therefore by Proposition 1.3.6 it preserves �.

1.3.1 � on constant types

If X = ∆(a) for some set a then �X has a much simpler description.

Lemma 1.3.9. If X = ∆(a) and P ≤ X then

�X(P )(ν) =

{
1 if ν = 0⋂ω1

ν=1 P (ν) otherwise
.

Proof. Since adjoints are unique we only need to show that �X is right adjoint to ¬¬X . On
constant objects the definition of ¬¬X simplifies to

(¬¬XP )(ν) =

{
1 if ν = 0

P (1) otherwise
.
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Thus suppose ¬¬XP ≤ Q. In particular, this means that for all ν ≥ 1, P (1) ⊆ Q(ν). Thus
P (1) ≤

⋂ω1

ν=1Q(ν) and since restrictions on X are inclusions, meaning that P (ν) ⊆ P (1) for any
ν ≥ 1, we get P ≤ �XQ.

Conversely, suppose P ≤ �XQ. Thus P (β) ≤
⋂ω1

ν=1Q(ν) for all β ≥ 1. In particular this
means that P (1) ⊆

⋂ω1

ν=1Q(ν) and so P (1) ⊆ Q(ν) for any ν ≥ 1, meaning that ¬¬XP ≤ Q.

Using this description we can show that �X is preserved by reindexing functors arising from
maps between constant sheafs.

Proposition 1.3.10. Let a, b be sets and f : a→ b. Then ∆(f)∗ ◦�∆(b) = �∆(a) ◦∆(f)∗.

Proof. Let ν ≥ 1 (for ν = 0 there is nothing to prove). By a simple calculation we have

(
∆(f)∗(�∆(b)(P ))

)
(ν) = f−1

[
ω1⋂
ν=1

P (ν)

]

and since preimages preserve intersections we get

=

ω1⋂
β=1

f−1 [P (β)]

=

ω1⋂
β=1

(∆(f)∗(P )(β))

=
(
�∆(a) (∆(f)∗(P ))

)
(ν)

Note that any morphism ϕ : ∆(a) → ∆(b) is of the form ϕ = ∆(f) for some (unique)
f : a → b, i.e. ∆ is full and faithful. Thus if we restrict to constant contexts � commutes with
substitution and so we may work informally with � as with ¬¬ or any other logical operation.

1.4 The ¬¬ modality

It is easy to see that � preserves all limits. Indeed, Π1 also has a left adjoint σ1 defined as follows

σ1(a)(0) = 1

σ1(a)(1) = a

σ1(a)(ν) = ∅ for ν ≥ 1

which then means that � has a left adjoint σ1 ◦ Π1 and thus it must preserve all limits. This
then implies, using the fact that ¬¬X(A) = η∗X (�A) and that limits in subobject lattices are
computed from limits in Sh (ω1), that ¬¬X preserves all limits. In particular, it preserves all
infima, meaning that it also has a left adjoint, which we call �X . It is given simply as

�X(P ) =
∧
{Q

∣∣ P ≤ ¬¬Q}
however it can be described in an elementary way as

Lemma 1.4.1.

�X(P )(ν) =


1 if ν = 0

P (1) if ν = 1

∅ otherwise
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Proof. By uniqueness of adjoints we only need to show that �X is left adjoint to ¬¬X .
First suppose �XP ≤ Q. We are to show P ≤ ¬¬Q. Let x ∈ P (ν). Then x|1 ∈ P (1), thus by

assumption in Q(1). Hence by the explicit description of ¬¬ we have that x ∈ ¬¬Q(ν).
Now suppose P ≤ ¬¬Q and we are to show �XP ≤ Q. The only non-trivial inclusion is at

stage 1. So take x ∈ P (1). Then x ∈ Q by assumption (since ¬¬Q(1) = Q(1)), concluding the
proof.

Note that σ1 ◦Π1 is a comonad, its counit is mono and using the descriptions above we have
that �X(P ) = σ1(Π1(mP )); εX where mP is the mono belonging to P and εX is the counit at X.

In contrast to �, however, � does commute with reindexing. Thus it defines a map � : Ω→ Ω
which is simply given as

�ν(β) =

{
0 if ν = 0

1 otherwise

or equivalently as �ν(β) = min{1, β} which then clearly shows that � is natural, i.e. a morphism
Ω→ Ω.

The fact that � is natural has as a consequence the fact that ¬¬ commutes with universal
quantification.

Lemma 1.4.2. Let ϕ : X → Y be a morphism and ∀ϕ the right adjoint to ϕ∗. Then ¬¬ ◦ ∀ϕ =
∀ϕ ◦ ¬¬.

Proof. We show two inequalities using properties of adjoints. We have for any R

R ≤ ¬¬ (∀ϕQ)↔ �R ≤ ∀ϕQ
↔ ϕ∗ (�R) ≤ Q
↔ � (ϕ∗R) ≤ Q
↔ ϕ∗R ≤ ¬¬Q
↔ R ≤ ∀ϕ (¬¬Q)

We now apply Yoneda’s lemma (or just immediately see that this implies equality) to conclude
the proof.

Note that the lemma states that ¬¬ commutes over all universals, not just the usual ones
arising from weakening. This is in contrast to the situation with ¬¬ and existentials. An
analogous proof to the above shows that � commutes over existentials. The reason we cannot use
the same proof to show that ¬¬ commutes over existentials, even though it has a right adjoint,
is that � does not commute with reindexing.

Note that the fact that � commutes with reindexing is not contrary to [8, Proposition 4.2]
since � does not preserve truth. It is however a comonad, i.e. �P ≤ P and � � P = �P .

Further, we can show that ¬¬ commutes with implication. Indeed, since ¬¬ preserves limits
in subobject lattices we immediately have ¬¬(P → Q) ≤ ¬¬P → ¬¬Q. For the other direction
we first recall that P → Q = ∀mP

(m∗PQ) where mP : P → X is the inclusion of P into X: To
that end we use the fact that P ∧Q = m∗P (Q). We have

P ∧R ≤ Q↔ P ∧R ≤ P ∧Q↔ m∗P (R) ≤ m∗P (Q)↔ R ≤ ∀mP
(m∗P (Q))

and by uniqueness of adjoints also P → Q = ∀mP
(m∗PQ). Using this, we can prove the following.

Lemma 1.4.3. ¬¬(P → Q) = P → ¬¬Q = ¬¬P → ¬¬Q

10



Proof. Since ¬¬(P → Q) ∧ P ≤ ¬¬(P → Q ∧ P ) ≤ ¬¬Q we get ¬¬(P → Q) ≤ P → ¬¬Q and
also ¬¬(P → Q) ≤ ¬¬P → ¬¬Q.

By the above characterization and the fact that ¬¬ commutes over reindexing and universals
we have. ¬¬(P → Q) = ¬¬ (∀mP

(m∗P (Q))) = ∀mP
(m∗P (¬¬Q)) = P → ¬¬Q It is easy to see

that ¬¬P → ¬¬Q ≤ P → ¬¬Q, with the same calculation as above (also, we can always weaken
the precondition). We thus have that ¬¬P → ¬¬Q ≤ P → ¬¬Q = ¬¬(P → Q). This concludes
the proof.

1.5 The . and I modalities

Recall that the first ordinal, 0, is a limit ordinal. It is the limit of the empty sequence. There is
a functor I : Sh (ω1)→ Sh (ω1) defined by

I(X)(ν + 1) = X(ν)

I(X)(α) = X(α) for a limit ordinal α

and the obvious action on morphisms. There is a natural transformation nextX : X → I(X)
defined as

nextXν+1 = rν

nextXα = idX(α) for a limit ordinal α

where rν = X(ν ≤ ν + 1) : X(ν + 1)→ X(ν) is the restriction map of X.
Using I we can define a notion of contractiveness of morphisms.

Definition 1.5.1. A morphism ϕ : X → Y is (externally) contractive if there exists a morphism
g : IX → Y , such that f = nextX ; g.

A useful property of contractive endomorphisms is that they have unique fixed points.

Proposition 1.5.2. If f : X → X is a contractive morphism then there exists a unique e : 1→ X
such that e; f = e.

Proof. Let f = nextX ; g. By construction of I we have that gν+1 : X(ν) → X(ν + 1) and
X(0) = 1. We thus define a global section by induction as follows1 (again, α is a limit ordinal)

e0(∗) = g0(∗)
eν+1(∗) = gν+1(eν(∗))

eα = lim
ν<α

eν

where limν<α eν denotes the unique element of X(α) that restricts to eν , ν < α. Now it is
obvious that r0(e1(∗)) = e0(∗). For the successor ordinals we have

rν(eν+1) = rν(gν+1(eν(∗))) = fν(eν(∗)) = eν(∗)

and

fν+1(eν+1(∗)) = gν+1(rν(eν+1(∗))) = gν+1(eν(∗)) = eν+1(∗).
1More precisely, we define at stage ν a triple of an element eν ∈ X(ν) and proofs that it is a fixed point of fν

and that it restricts to the previous ones.
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and for limit ordinals we have that eα restricts to previous ones by construction. To show
that fα(eα(∗)) = eα(∗) we show that fα(eα(∗)) restricts to the same elements. Let ν < α.

fα(eα(∗))|ν = fν (eα|ν) = fν(eν) = eν

hence fα(eα(∗)) = eα by uniqueness of amalgamations.
Thus e defines a natural transformation 1→ X with e; f = e. To see that it is unique observe

that if e′ : 1→ X is such that e′; f = e′ we have

e′ν+1(∗) = fν+1(e′ν+1(∗)) = gν+1(rν(e′ν+1(∗))) = gν+1(e′ν(∗))

and the values at limit ordinals α are uniquely determined by the sheaf condition. Thus e′ =
e.

. modality I is a modality on types. It is easy to see that it preserves all limits, since they
are constructed pointwise. In particular, it preserves monos, therefore subobjects. Thus we can
define an operation on subobject lattices, which we call .. Given m : A ≤ X the subobject
.m : .A ≤ X is defined via pullback along nextX as in the following diagram

.XA IA

X IX.

.m Im

nextX

Since it is defined via pullback it is easy to see that this operation is natural in X, i.e. for any
morphism ϕ : Y → X we have ϕ∗ ◦ .X = .Y ◦ ϕ∗. By the usual Yoneda argument we thus get a
morphism . : Ω → Ω such that given A ≤ X with the characteristic map χA, the characteristic
map of .XA is χA; ..

We can compute . : Ω→ Ω more explicitly. It is given by

.ν(β) = min(β + 1, ν).

1.6 Kripke-Joyal semantics

Let X be a sheaf and ϕ,ψ formulas in the internal language with a free variable of type X, i.e.
x : X ` ϕ : Ω and x : X ` ψ : Ω.

Let ν ≤ ω1 and ξ ∈ X(ν). Then

ν  ⊥ iff ν = 0

ν  > iff always

ν  ϕ iff Jϕν(ξ)K =↓ν
ν  ϕ(ξ) ∧ ψ(ξ) iff ν  ϕ(ξ) and ν  ψ(ξ)

ν  ϕ(ξ) ∨ ψ(ξ) iff ν  ϕ(ξ) or ν  ψ(ξ) if ν is a successor ordinal

ν  ϕ(ξ) ∨ ψ(ξ) iff for all β < ν, β  ϕ(ξ|β) or β  ψ(ξ|β) if ν is a limit ordinal

ν  ϕ(ξ)→ ψ(ξ) iff for all β ≤ ν, β  ϕ(ξ|β) implies β  ψ(ξ|β)

ν  ¬ϕ(ξ) iff for all β ≤ ν, β  ϕ(ξ|β) implies β = 0

12



Further, if x : X, y : Y ` ϕ : Ω, ν ≤ ω1 and ξ ∈ X(ν) then

ν  ∃y, ϕ(ξ, y) iff there exists ξ′ ∈ Y (ν), ν  ϕ(ξ, ξ′) if ν is a successor ordinal

ν  ∃y, ϕ(ξ, y) iff for all β < ν there exists ξβ ∈ Y (β), β  ϕ(ξ|β , ξβ) if ν is a limit ordinal

ν  ∀y, ϕ(ξ, y) iff for all β ≤ ν, for all ξβ ∈ Y (β), β  ϕ(ξ|β , ξβ)

These are standard, cf. [6, Theorem VI.7.1]. The semantics of . is as follows. Let ϕ : ΩX . Then

ν  .ϕ(α) iff for all β < ν, β  ϕ(α|β) (1)

For successor ordinals ν = ν′ + 1 this reduces to

ν + 1  .ϕ(α) iff ν′  ϕ(α|ν′)

which is easy to check from the definition of . above. For limit ordinals the characterization
in (1) follows from the local character property (see below).

Note that 0  ϕ for any ϕ and 1  .ϕ for any ϕ. This is a bit different than the case for
presheaves.

Local character By the local character property [6, VI.7 (page 316)] we have for any limit
ordinal ξ

ξ  ϕ(α) iff for all β < ξ, β  ϕ(α|β).

Therefore to prove validity of a formula at a limit ordinal, it suffices to do so on all strictly
smaller ordinals. This is essentially why one uses sheaves instead of presheaves, to transfer local
properties to global ones.

Note that from the characterization in (1) it is immediate that p→ .p for any p.

Proposition 1.6.1. . satisfies the Löb induction rule ∀p : Ω, (.p → p) → p and also satisfies
the following properties.

• . preserves ∧, ∨, > and →,

• .(∀x : X,ϕ(x))→ ∀x : X, .ϕ(x),

• ∃x : X, .ϕ(x)→ .(∃x : X,ϕ(x)).

Proof. The proof of the Löb induction rule is by Kripke-Joyal semantics. More precisely, by
induction on ν we prove that for all ξ ∈ Ω(ν), for all β ≤ ν, β  (.p→ p)(ξ|β) implies ξ|β = β.

• If ν = 0 there is nothing to prove.

• If ν = ν′ + 1 we consider two cases.

– If β ≤ ν′ the result follows directly from the induction hypothesis.

– If β = ν assume β  (.p → p)(ξ). We need to show ξ = β. By induction hypothesis
and monotonicity ξ|ν′ = ν′, or in other words, ν′  ξ|ν′ . Since by assumption β  .ξ
implies β  ξ we get β = ξ.

If ν is a limit ordinal the result follows from the local character property.
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. preserves ∧ Given two subobjects A,B ≤ X with characteristic maps χA, χB , the character-
istic map of A ∧ B is given by 〈χA, χB〉;∧, where ∧ : Ω × Ω → Ω is given by ∧ν(β, β′) =
min{β, β′}. It is thus easy to see that ∧ commutes with ., i.e. that .× .;∧ = ∧; ..

. preserves → Similarly to ∧, → is given on subobjects by composition with →: Ω × Ω → Ω
which is given as

→ν (β, β′) =

{
ν if β′ ≥ β
β′ otherwise

and since . preserves order, i.e. β′ ≥ β implies .ν(β′) ≥ .ν(β), it is easy to see that
→; . = .× .;→.

. preserves ∨ ∨ is given on subobjects by composition with ∨ : Ω× Ω→ Ω which is given by

∨ν(β, β′) = max{β, β′}.

Using this it is easy to see that .× .;∨ = ∨; ..

Universal quantifier Take ν ≤ ω1 and assume ν  .(∀x : X,ϕ(x)). Take β ≤ ν and xβ ∈
X(β). We are to show β  .ϕ(xβ). Let β′ < β. We are to show β′  ϕ(xβ |β′). Since

β′ < ν we have that β′  ∀x : X,ϕ(x). The conclusion follows.

Existential quantifier Take ν ≤ ω1 and assume ν  ∃x : X, .ϕ(x). We are to show ν  .(∃x :
X,ϕ(x)).

Let β < ν. We have to show β  ∃x : X,ϕ(x).

Suppose ν is a successor ordinal. Using the assumption we have that there exists xν ∈ X(ν),
such that ν  .ϕ(xν) which implies in particular that β  ϕ(xν |β). Choosing xν |β ∈ X(β)
we have that β  ∃x : X,ϕ(x).

Suppose ν is a limit ordinal. Let β < ν. Then β + 1 < ν and by assumption there exists a

xβ+1 ∈ X(β + 1) such that β  ϕ
(
xβ+1|β

)
. Thus β  ∃x : X,ϕ(x).

Proposition 1.6.2. If X is total then (∀x : X, .ϕ(x))→ .(∀x : X,ϕ(x)) holds.

Proof. Take ν < ω1 and assume ν  ∀x : X, .ϕ(x). Take β < ν. We are to show β  ∀x : X,ϕ(x).
Take ξ ≤ β and xξ ∈ X(ξ). Since X is total there is xξ+1 ∈ X(ξ + 1) that restricts to xξ. Since
ξ + 1 ≤ ν we have ξ + 1  .ϕ(xξ+1), thus ξ  ϕ(xξ).

Remark 1.6.3. It is not the case that iff X is total and inhabited then .(∃x : X,ϕ(x)) → ∃x :
X, .ϕ(x) holds. In fact, even if X is a constant sheaf this does not necessarily hold.

Proof. Let X = δ(N). The constant sheaf of natural numbers is

1 N N N Nid id id id

Let A ≤ X be the subobject defined as follows

A(0) = 1

A(n) = {k
∣∣ n ≤ k < ω} for 0 < n < ω

A(ν) = ∅ for ω ≤ ν < ω1
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A is a subsheaf of X. Let ϕ be the characteristic map of A. If .(∃x : X,ϕ(x)) → ∃x : X, .ϕ(x)
were to hold it would hold at stage ω+ 1. But ω+ 1  .(∃x : X,ϕ(x)) since for all n < ω, exists
n ∈ A(n), i.e. we can choose xn = n and then n  ϕ(xn).

But notice that X(ω + 1) is empty, hence the right hand side of the implication is false.

Remark 1.6.4. The last remark has implications for fixed points. It seems that the internal
Banach fixed point theorem does not hold in the same generality as it does in the topos of
trees [4], or rather the proof that works for the topos of trees does not carry over, since it uses
the fact that later commutes over existentials for total and inhabited objects.

This state of affairs makes intuitive sense, since [4, Lemma 2.10] makes no intuitive sense for
Sh (ω1) since it implies that at any stage we can get a fixed point by a finite iteration, something
we would not expect to hold in Sh (ω1).

1.7 Guarded recursive predicates

We now show that suitably internally contractive functions have unique fixed-points, thus estab-
lishing the existence of recursively defined predicates and relations.

Definition 1.7.1. Define

Inhab (X) = ∃x : X.>
Total (X) = ∀x : IX,∃x′ : X,nextX(x′) = x

If ` Inhab (X) then each X(ν) is non-empty, but this does not mean that a global section
exists. If ` Total (X) then the restriction maps are surjections (which implies that each stage
X(ν) is inhabited, since X is a sheaf, i.e. X(1) = 1).

Proposition 1.7.2 (Internal Banach fixed point theorem). The following holds in the internal
logic of Sh (ω1).

Total (X)→ ∀f : XX ,Contrf → ∃!x : X, f(x) = x

Proof. We use the Kripke-Joyal forcing semantics and proceed by induction on ν. If ν = 0 there
is nothing to prove. Let ν = ν′ + 1 and assume ν  Total (X). Let f ∈ XX(ν), β ≤ ν and
β  Contrf . We are to show β  ∃!x : X, f(x) = x. We define a sequence of elements eξ ∈ X(ξ)
for ξ ≤ β as follows.

e0 = f0(∗)
eξ+1 = fξ+1(r−1

ξ (eξ))

eα = lim
ξ<α

eξ

This requires some explanations. First, r are the restriction maps of X. Second, α is again a
limit ordinal and the limit means the unique element of X(α) that exists by the sheaf condition.
Third, since ξ + 1 in the definition is smaller or equal to ν we can use the assumption that X is
total with the element eξ to get some element r−1

ξ (eξ) ∈ X(ξ + 1) that restricts to eξ.

First we observe that the choice of r−1
ξ (eξ) ∈ X(ξ + 1) does not matter. This follows from

contractivness of f since if u, v both restrict to eξ then fξ+1(u) = fξ+1(v).
Further, we have that fξ(eξ) = eξ and that rξ(eξ+1) = eξ. For ξ = 0 this is obvious. For

successor ordinals we have

fξ+1(eξ+1) = fξ+1(fξ+1(r−1
ξ (eξ)))
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Since f is contractive it suffices to show rξ(eξ+1) = rξ(fξ+1(r−1
ξ (eξ)))) and this follows by

naturality of f and the induction hypothesis.
And

rξ(eξ+1) = rξ(fξ+1(r−1
ξ (eξ))) = fξ(eξ) = eξ.

For limit ordinals the restrictions are automatic. To see that fα(eα) = eα we show that
fα(eα) restricts to the same elements and this is immediate by naturality of the family f .

Thus there exist a xβ ∈ X(β) such that fβ(xβ) = xβ . Uniqueness is shown similarly to
uniqueness of external fixed points in the proof of Proposition 1.5.2.

1.8 Predicates defined as least and greatest fixed points

Inductively and coinductively defined predicates are constructed as least and greatest fixed points
of suitable maps of type P (X)→ P (X) for a suitable X, giving a predicate on X. We will show
that these predicates are ¬¬ closed provided the defining functions are sufficiently tame.

Greatest fixed points

Proposition 1.8.1. Suppose ϕ is a predicate on Γ, x : X and suppose that the sequent

Γ | ∅ ` ∀x : X,ϕ↔ F (ϕ)

holds where F (ϕ) is a well-formed formula in context Γ, x : X consisting of ∀,→,∧,∨,>,⊥ and
existential quantification over total types and using only ¬¬-closed relational symbols.

Then
Γ | ∅ ` ∀x : X,¬¬ϕ↔ F (¬¬ϕ)

also holds.

Proof. From
Γ | ∅ ` ∀x : X,ϕ↔ F (ϕ)

we immediately get
Γ | ∅ ` ¬¬ (∀x : X,ϕ↔ F (ϕ))

and using the fact that ¬¬ commutes with implication, universal quantifiers and conjuction we
get

Γ | ∅ ` ∀x : X,¬¬ϕ↔ ¬¬F (ϕ)

and now the restrictions on F guarantee that ¬¬F (ϕ) = F (¬¬ϕ), concluding the proof.

As a consequence, suppose we define a predicate ϕ on X coinductively as the greatest fixed
point of some F : P (X)→ P (X). Since ϕ→ ¬¬ϕ and if ϕ is a fixed point then also ¬¬ is, we
have that ϕ is ¬¬-closed.

Least fixed points

Proposition 1.8.2. Suppose ϕ is a predicate on Γ, x : X and suppose that the sequent

Γ | ∅ ` ∀x : X,F (ϕ)→ ϕ

holds where F (ϕ) is a well-formed formula in context Γ, x : X consisting of ∀,→,∧,∨,>,⊥ and
existential quantification over total types and using only ¬¬-closed relational symbols where in
addition ϕ only occurs positively, i.e. F preserves implication.
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Then
Γ | ∅ ` ∀x : X,F (�ϕ)→ �ϕ

also holds.

Proof. Since � does not behave as well as ¬¬ we have to prove this using the model. Our
assumption gives us that JF (ϕ)K ≤ JϕK in the fiber over Γ, x : X and we wish to show JF (�ϕ)K ≤
J�ϕK = � JϕK. Since � is the right adjoint to ¬¬ we have

JF (�ϕ)K ≤ � JϕK↔ ¬¬ JF (�ϕ)K = J¬¬F (�ϕ)K ≤ JϕK

and since the assumptions on F guarantee that ¬¬F (ϕ) = F (¬¬ϕ) we have

↔ JF (¬¬�ϕ)K ≤ JϕK

which by properties of ¬¬ and � gives us

↔ JF (�ϕ)K ≤ JϕK

which holds by the fact that �ϕ→ ϕ and the assumption on monotonicity of F .

It is an easy fact to show that least fixed points of monotone functions are exactly their least
prefixed points. Using Proposition 1.8.2 and the facts that � is deflationary and for any ϕ, �ϕ
is ¬¬-closed we can conclude that inductively defined predicates are constant, provided they can
be defined using a suitable subset of the logic.

Consequence for the external interpretation Since Π1 is a logical functor it preserves
structure of an elementary topos. More precisely, Π1 : Sh (ω1)→ Set gives rise to the morphism
of higher-order fibrations

SubSh(ω1) SubSet

Sh (ω1) Set

cod cod

Π1

that preserves the structure of a higher-order fibration (i.e. constructs to model higher-order
logic). In particular this means it preserves validity of formulas in the internal language that use
only the usual connectives of higher-order logic (i.e. everything but . and �).

Thus given a formula ϕ of higher-order logic (i.e. no � and no .) in some context Γ and
choosing some interpretations of relational symbols, the denotation Π1 (JϕK) as a subobject of
Π1 (JΓK) is the same as the denotation of ϕ in Set, replacing the interpretations of relational
symbols and types by their values at stage 1.

For instance if

x : ∆(a), y : ∆(b) | ∅ ` ∀z : P (∆(a)) ,∃w : P (∆(b)) , P (x,w)→ Q(z, y)

holds in the logic of Sh (ω1) with P and Q being interpreted as some ∆(p) and ∆(q), respectively,
then

x : a, y : b | ∅ ` ∀z : P (a) ,∃w : P (b) , P (x,w)→ Q(z, y)

holds with P being interpreted as p and Q as q (we used the that Π1 ◦∆ = idSet).
Combining this with the construction of fixed points we get that least and greatest fixed

points constructed internally are mapped correspond to external least and greatest fixed points.
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Proposition 1.8.3. Let ϕ be a predicate symbol on ∆(a) and let F (ϕ) be a formula in context
x : ∆(a). Suppose F (ϕ) is monotone in ϕ and suppose it involves only quantifiers over constant
sets and constant predicate symbols. If

∅ | ∅ `(∀x : ∆(a), ϕ(x)↔ F (ϕ)) (2)

∧ (∀ψ : P (∆(a)) , (∀x : ∆(a), ψ(x)↔ F (ψ))→ (∀x : ∆(a), ψ(x)→ ϕ(x))) (3)

holds in the logic of Sh (ω1) then

∅ | ∅ `(∀x : a, ϕ(x)↔ Π1(F )(ϕ)) (4)

∧ (∀ψ : P (a) , (∀x : a, ψ(x)↔ Π1(F )(ψ))→ (∀x : a, ψ(x)→ ϕ(x))) (5)

holds in the logic of Set with interpretations of relational symbols being Π1-images of their chosen
interpretations in Sh (ω1). Here Π1(F ) means replacing occurrences of ∆(b) in quantifiers with
b.

Remark 1.8.4. Note that if ϕ is a predicate on ∆(a) (in the empty context) then ϕ(x) is a
formula in context x : ∆(a). These formulas characterize ϕ as the greatest predicate (or subset)
satisfying F . We can state and prove an analogous property for least fixed points.

From Proposition 1.8.1 we have that if formulas (2) and (3) hold then ϕ = ¬¬ ◦ ϕ. Thus
x : ∆(a) | ∅ ` ϕ(x) corresponds to a constant subobject of ∆(a), say ∆

(
ϕ
)
. Formulas (4) and (5)

then state that ϕ is the greatest fixed point of “the same” formula.

1.9 Transitive closure

We prove that given a ¬¬ closed relation R on a set with decidable equality its reflexive and
transitive closure R∗ is also ¬¬-closed.

Lemma 1.9.1. Let R ⊆ X × X be a relation on a decidable total type X. If R is ¬¬-closed
(meaning for all x, x′ : X, (x, x′) ∈ R ↔ ¬¬((x, x′) ∈ R)) then the reflexive transitive closure
R∗ is also ¬¬-closed.

Proof. By construction R∗ =
∨
n∈NR

n where the sequence {Rn}n∈N is defined by induction as

R0 = {(x, x′)
∣∣ x = x′}

Rn+1 = {(x, x′′)
∣∣ ∃x′ : X, (x, x′) ∈ R ∧ (x′, x′′) ∈ Rn}

Thus it suffices to show that all Rn are ¬¬-closed and we do this by induction. R0 is ¬¬-closed
since X is assumed to have decidable equality. Assuming Rn is ¬¬-closed we have

¬¬((x, x′) ∈ Rn+1)↔ ¬¬∃x′ : X, (x, x′) ∈ R ∧ (x′, x′′) ∈ Rn

and since X is assumed to be total we have by Lemma 1.3.7 and the fact that ¬¬ commutes
with conjunction that

↔ ∃x′ : X,¬¬((x, x′) ∈ R) ∧ ¬¬((x′, x′′) ∈ Rn)

which is by assumption on R and the induction hypothesis equivalent to

↔ ∃x′ : X, (x, x′) ∈ R ∧ (x′, x′′) ∈ Rn
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which is by definition of Rn+1 equivalent to

↔ (x, x′) ∈ Rn+1.

In particular, all constant sets are total and decidable and so the lemma applies.

2 The model of a language with countable choice

In this section we introduce Fµ,?, a call-by-value functional language akin to System F, i.e., with
impredicative polymorphism, existential and general recursive types, extended with a countable
choice expression ?. We work informally in the internal logic of Sh (ω1) outlined above except
where explicitly stated.

2.1 Syntax and operational semantics

The syntax of types, terms and values is defined in Figure 1. These should be understood as
initial algebras of suitable polynomial functors.

τ ::= α | 1 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | µα.τ | ∀α.τ | ∃α.τ
v ::= x | 〈〉 | 〈v1, v2〉 | λx.e | inl v | inr v | Λ.e | pack v
e ::= x | 〈〉 | 〈e1, e2〉 | λx.e | inl e | inr e | Λ.e | pack e

| ? | proji e | e1 e2 | case (e, x1.e1, x2.e2) | e[] | unpack e1 as x in e2

| unfold e | fold e
E ::= − | 〈E, e〉 | 〈v,E〉 | inl E | inr E | packE

| projiE | E e | v E | case (E, x1.e1, x2.e2) | E[] | unpack E as x in e

| unfoldE | foldE
C ::= − | 〈C, e〉 | 〈e, C〉 | λx.C | inl C | inr C | Λ.C | packC

| proji C | C e2 | eC | case (C, x1.e1, x2.e2) | case (e, x1.C, x2.e2)

| case (e, x1.e1, x2.C) | C[] | unpack C as x in e | unpack e as x in C

| unfoldC | foldC

Figure 1: Types, terms and evaluation contexts

The types include polymorphic, existential and recursive types. The terms are standard,
apart from the countable choice expression ?. We assume disjoint, countably infinite sets of type
variables, ranged over by α, and term variables, ranged over by x. The free type variables of
types and terms, ftv(τ) and ftv(e), and free term variables fv(e), are defined in the usual way.
The notation (·)[~τ/~α] denotes the simultaneous capture-avoiding substitution of types ~τ for the
free type variables ~α in types and terms; similarly, e[~v/~x] denotes simultaneous capture-avoiding
substitution of values ~v for the free term variables ~x in e.
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Composition of evaluation contexts Evaluation contexts can be composed. Given two
evaluation contexts E,E′ we define E ◦ E′ by induction on E as follows

[] ◦ E′ = E′

〈E, e〉 ◦ E′ = 〈E ◦ E′, e〉
〈v,E〉 ◦ E′ = 〈v,E ◦ E′〉

(projiE) ◦ E′ = projiE ◦ E
′

(inlE) ◦ E′ = inl (E ◦ E′)
(inrE) ◦ E′ = inr (E ◦ E′)

(foldE) ◦ E′ = fold (E ◦ E′)
(unfoldE) ◦ E′ = unfold (E ◦ E′)

(packE) ◦ E′ = pack (E ◦ E′)
(unpack E as x in e) ◦ E′ = unpack (E ◦ E′) as x in e

(case (E, x1.e1, x2.e2)) ◦ E′ = case (E ◦ E′, x1.e1, x2.e2)

(case (E, x1.e1, x2.e2)) ◦ E′ = case (E ◦ E′, x1.e1, x2.e2)

(E e) ◦ E′ = (E ◦ E′) e
(v E) ◦ E′ = v (E ◦ E′)

Lemma 2.1.1. For any pair of evaluation contexts E,E′ and an expression e,

E[E′[e]] = (E ◦ E′)[e]

Types We define the type of natural numbers nat as nat = µα.1 +α and the corresponding
numerals as 0 = fold (inl 〈〉) and n+ 1 = fold (inr n) by induction on n.

The type system is defined in Figure 3. The judgment ∆ ` τ is defined in Figure 2. The
judgments are mostly standard, apart from the typing of ?.

α ∈ ∆

∆ ` α
∆ ` 1

∆ ` τ1 ∆ ` τ2
∆ ` τ1 × τ2

∆ ` τ1 ∆ ` τ2
∆ ` τ1 + τ2

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∃α.τ

∆, α ` τ
∆ ` ∀α.τ

∆, α ` τ
∆ ` µα.τ

Figure 2: Well-formed types. The judgment ∆ ` τ means ftv(τ) ⊆ ∆.

We write Type(∆) for the set of types well-formed in context ∆ and Type for the set of
closed types τ , i.e., where ftv(τ) = ∅. We write Val (τ) and Tm (τ) for the sets of closed values
and terms of type τ , respectively. We write Val and Tm for the set of all closed values and closed
terms, respectively. Stk (τ) denotes the set of τ -accepting evaluation contexts, i.e. evaluation
contexts E, such that given any closed term e of type τ , E[e] is a typeable term. Stk denotes
the set of all evaluation contexts.
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x:τ ∈ Γ ∆ ` Γ

∆; Γ ` x : τ

∆ ` Γ

∆; Γ ` 〈〉 : 1

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2

∆; Γ ` 〈e1, e2〉 : τ1× τ2

∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx.e : τ1→ τ2

∆; Γ ` e : τ1 ∆ ` τ2
∆; Γ ` inl e : τ1 + τ2

∆; Γ ` e : τ2 ∆ ` τ1
∆; Γ ` inr e : τ1 + τ2

∆; Γ, x1:τ1 ` e1 : τ ∆; Γ, x2:τ2 ` e2 : τ ∆; Γ ` e : τ1 + τ2

∆ Γ ` case (e, x1.e1, x2.e2) : τ

∆, α; Γ ` e : τ

∆; Γ ` Λ.e : ∀α.τ
∆; Γ ` e : τ1 × τ2
∆; Γ ` proji e : τi

∆; Γ ` e : τ ′ → τ ∆; Γ ` e′ : τ ′

∆; Γ ` e e′ : τ

∆ ` τ1 ∆; Γ ` e : τ [τ1/α]

∆; Γ ` pack e : ∃α.τ

∆; Γ ` e : ∃α.τ1 ∆ ` τ ∆, α; Γ, x : τ1 ` e′ : τ

∆; Γ ` unpack e as x in e′ : τ

∆; Γ ` e : µα.τ

∆; Γ ` unfold e : τ [µα.τ/α]

∆; Γ ` e : τ [µα.τ/α]

∆; Γ ` fold e : µα.τ

∆; Γ ` e : ∀α.τ ∆ ` τ ′

∆; Γ ` e[] : τ [τ ′/α]

∆ ` Γ

∆; Γ ` ? : nat

Figure 3: Typing of terms, where Γ ::= ∅ | Γ, x:τ and ∆ ::= ∅ | ∆, α. The notation ∆ ` τ means
that ftv(τ) ⊆ ∆.

For a typing context Γ = x1:τ1, . . . , xn:τn with τ1, . . . , τn ∈ Type, let

Subst(Γ) = {γ ∈ Val~x | ∀1 ≤ i ≤ n. γ(xi) ∈ Val (τi)}

denote the set of type-respecting value substitutions. In particular, if ∆; Γ ` e : τ then ∅;∅ `
eγ : τδ for any δ ∈ Type∆ and γ ∈ Subst(Γδ), and the type system satisfies standard properties
of progress and preservation and a canonical forms lemma.

The operational semantics of the language is given in Figure 4 by a reduction relation e e′.
In particular, the choice operator ? evaluates nondeterministically to any numeral n (n ∈ N).
We use evaluation contexts E, and write E[e] for the term obtained by plugging e into E.

To define the logical relation we need further reduction relations. These will allow us to
ignore most reductions in the definition of logical relation.

Let ∗ be the reflexive transitive closure of . We call reductions of the form unfold (fold v) 
v unfold-fold reductions and reductions of the form ?  n (n ∈ N) choice reductions. We
define

• e p
 e′ if e ∗ e′ and none of the reductions is a choice reduction

• e 0
 e′ if e ∗ e′ and none of the reductions is an unfold-fold reduction

• e 1
 e′ if e ∗ e′ and exactly one of the reductions is an unfold-fold reduction
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Basic reductions 7−→

proji 〈v1, v2〉 7−→ vi unfold (fold v) 7−→ v

(λx.e) v 7−→ e[v/x] unpack (pack v) as x in e 7−→ e[v/x]

(Λ.e)[] 7−→ e case (inl v, x1.e1, x2.e2) 7−→ e1[v/x1]

? 7−→ n (n ∈ N) case (inr v, x1.e1, x2.e2) 7−→ e2[v/x2]

One step reduction relation  

E[e] E[e′] if e 7−→ e′

Figure 4: Operational semantics.

• p,1
 =

p
 ∩ 1

 

• p,0
 =

p
 ∩ 0

 

The
1
 reduction relation will be used in the stratified definition of divergence, see Section 2.2

and the other reduction relations will be used to state additional properties of the logical relation.

2.2 Termination relations

In order to define the >> closure we need to define our observations. Recall that previously
in [3] this was achieved by defining the termination relations ⇓ and ↓ and stratified versions of
these, ⇓β and ↓n for β < ω1 and n < ω. Focusing on ⇓β , it is defined by induction on β as

e ⇓β↔ ∀e′, e
1
 e′ → ∃ν < β, e′ ⇓ν . It is easy to see that ⇓β⊆⇓β+1 so {⇓β}β<ω1

does not define

a subobject of the constant sheaf ∆(Tm).
But observe that defining 7→β = Tm\ ⇓β , 7→β may be defined by induction on β as

e 7→β ↔ ∃e
′, e

1
 e′ ∧ ∀ν < β, e′ 7→ν .

Using this, we define internally 7→ : P (Tm) as the unique fixed point of Ψ : P (Tm)→ P (Tm)
given by

Ψ(m) =
{
e : Tm

∣∣∣ ∃e′, e 1
 e′ ∧ .(m(e′))

}
.

This is the stratified definition of may-divergence (there is a diverging path). We can also define
(internally) non-stratified divergence predicate ↑ as the greatest fixed-point of Φ : P (Tm) →
P (Tm) given as

Φ(m) =
{
e : Tm

∣∣∣ ∃e′, e e′ ∧m(e′)
}
.

Since Φ is monotone the greatest fixed point exists by Knaster-Tarski fixed-point theorem (which
holds in any topos). Observe that Ψ is almost the same as Φ ◦ ., apart from using a different
reduction relation.

Lemma 2.2.1. Let e, e′ ∈ Tm. The following hold in the internal language.

1. if e
p
 e′ then e↑ ↔ e′↑

2. if e
p,0
 e′ then e 7→ ↔ e′ 7→
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3. if e
0
 e′ then (e′ 7→)→ e 7→

4. if e
1
 e′ then .(e′ 7→)→ e 7→

Proof. 1. Suppose e
p
 e′. If e = e′ there is nothing to do. Otherwise, the crucial property we

have is that there exists a unique e′′, such that e  e′′ and e′′
p
 e′. Using this property

this case follows by induction on the number of steps in
p
 .

2. This property follows from the fact that if e
p,0
 e′ then e

1
 e′′ if and only if e′

1
 e′′ which

is easy to see directly from the definition of these relations.

3. Suppose e
0
 e′ and e′ 7→. Then by definition there exists a e′′, such that e′

1
 e′′ and .(e′′ 7→).

By definition of
1
 we also have e

1
 e′′ and so e 7→.

4. This follows directly from the definition of the 7→ relation.

2.3 Must-contextual and must-CIU preorders

Contexts can be typed as second-order terms, by means of a typing judgment of the form
C : (∆ | ΓV τ)→ (∆′ | Γ′ V σ), stating that whenever ∆ | Γ ` e : τ holds, ∆′ | Γ′ ` C[e] : σ also
holds. The typing of contexts can be defined as an inductive relation defined by suitable typing
rules, which we omit here since they are standard; see [1]. We write C : (∆ | ΓV τ) to mean
there exists a type σ, such that C : (∆ | ΓV τ)→ (∅ | ∅V σ) holds.

We define contextual must-approximation using the may-divergence predicate. This is in
contrast with the definition in [3] which uses the must-convergence predicate. However externally,
in the model, this definition is precisely the one used in [3].

Definition 2.3.1 (Must-contextual approximation). We define the must-contextual approxima-
tion relation as

∆ | Γ ` e1 .
ctx
⇓ e2 : τ

4↔ ∆ | Γ ` e1 : τ ∧∆ | Γ ` e2 : τ ∧
∀C,C : (∆ | ΓV τ) ∧ C[e2]↑ → C[e1]↑

Note the order of terms in the implication: if C[e2] may-diverges then C[e1] may-diverges.
This is the contrapositive of the usual definition which states that if C[e1] must-converges then
C[e2] must-converges. Must-contextual approximation defined explicitly using contexts can be
shown to be the largest compatible adequate and transitive relation, so it coincides with contex-
tual approximation defined in [3].

In practice it is difficult to work with contextual approximation directly. An alternative
characterization of the contextual approximation and equivalence relations can be given in terms
of CIU preorders [7], which we define below. We will use the logical relation to prove that
CIU and contextual approximations coincide and that both of them coincide with the logical
approximation relation.

The definition of the CIU approximation is the same as in [3], only with changed termination
relations. We state it here for completeness and reference.

Definition 2.3.2 (CIU approximation). Must-CIU approximation, .CIU, is the type-indexed
relation defined as follows: for all e, e′ with ∆; Γ ` e : τ and ∆; Γ ` e′ : τ ,

∆ | Γ ` e .CIU
⇓ e′ : τ ↔ ∀δ ∈Type(∆), γ ∈Subst(Γδ), E ∈ Stk (τδ) , E[e′γ]↑ → E[eγ]↑
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Note again the order of terms e and e′ in the implication.
It is simple to see that must-contextual approximation implies must-CIU approximation.

However the converse is not so simple to see. We will prove it by constructing the logical relation
and proving that all three relations coincide.

2.4 Logical approximation relation

We now define the logical relation, internalizing the definition in [3]. The major difference is
that instead of using must-termination and stratified must-termination predicates we use may-
divergence and stratified may-divergence predicates.

Relational interpretation of types Given two closed types τ, tau′ ∈ Type let VRel (τ, τ ′) =
P (Val (τ)×Val (τ ′)), TRel (τ, τ ′) = P (Tm (τ)×Tm (τ ′)) and SRel (τ, τ ′) = P (Stk (τ)× Stk (τ ′)).
We implicitly use the inclusion VRel (τ, τ ′) ⊆ TRel (τ, τ ′). For a type variable context ∆ we
define VRel (∆) as the extension of VRel (·, ·)

VRel (∆) =
{

(ϕ1, ϕ2, ϕr)
∣∣ ϕ1, ϕ2 : ∆→ Type,∀α ∈ ∆, ϕr(α) ⊆ VRel (ϕ1(α), ϕ2(α))

}
where the first two components give syntactic types for the left and right hand sides of the
relation and the third component is a relation between those types.

The interpretation of types, J· ` ·K is by induction on the judgement ∆ ` τ . Given a judgment
∆ ` τ and ϕ ∈ VRel (∆) J∆ ` τK (ϕ) ⊆ VRel (ϕ1(τ), ϕ2(τ)) where the ϕ1 and ϕ2 are the first
two components of ϕ and ϕ1(τ) denotes substitution of types in ϕ1 for free type variables in τ .
It is defined below. For the sake of readability we omit the typing judgments in each case, but
they should be understood to be there.

J∆ ` αK (ϕ) = ϕr(α)

J∆ ` 1K (ϕ) = Id1

J∆ ` τ1 × τ2K (ϕ) =
{

(〈v, u〉, 〈v′, u′〉)
∣∣∣ (v, v′) ∈ J∆ ` τ1K (ϕ) , (u, u′) ∈ J∆ ` τ2K (ϕ)

}
J∆ ` τ1 + τ2K (ϕ) =

{
(inl v, inl v′)

∣∣∣ (v, v′) ∈ J∆ ` τ1K (ϕ)
}
∪{

(inru, inru′)
∣∣∣ (u, u′) ∈ J∆ ` τ2K (ϕ)

}
J∆ ` τ1 → τ2K (ϕ) =

{
(λx.e, λy.e′)

∣∣∣ ∀(v, v′) ∈ J∆ ` τ1K (ϕ), (e[v/x], e′[v′/y]) ∈ J∆ ` τ2K (ϕ)
>>
}

J∆ ` ∀α.τK (ϕ) =
{

(Λ.e,Λ.e′)
∣∣∣ ∀σ, σ′ ∈ Type,∀s ∈ VRel (σ, σ′) , (e, e′) ∈ J∆, α ` τK (ϕ [α 7→ (σ, σ′, s)])

>>
}

J∆ ` ∃α.τKϕ,ψ (ϕ) =
{

(pack v, pack v′)
∣∣∣ ∃σ, σ′ ∈ Type,∃s ∈ VRel (σ, σ′) , (v, v′) ∈ J∆, α ` τK (ϕ [α 7→ (σ, σ′, s)])

}
J∆ ` µα.τK (ϕ) = fix

(
λs.
{

(fold v, fold v′)
∣∣∣ . ((v, v′) ∈ J∆, α ` τK (ϕ [α 7→ s]))

})
where the ·>> : VRel (τ, τ ′) → TRel (τ, τ ′) is defined with the help of ·> : VRel (τ, τ ′) →

SRel (τ, τ ′) as follows

r> =
{

(E,E′)
∣∣∣ ∀(v, v′) ∈ r, E′[v′]↑ → E[v] 7→

}
r>> =

{
(e, e′)

∣∣∣ ∀(E,E′) ∈ r>, E′[e′]↑ → E[e] 7→

}
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The internal Banach’s fixed point theorem implies that the interpretation of recursive types
is well defined.

The following lemmata are simple to prove.

Lemma 2.4.1. ·>> is monotone and inflationary, i.e.

• For all r, r ⊆ r>>

• For all r, s, r ⊆ s→ r>> ⊆ s>>

Lemma 2.4.2. Let r ∈ VRel (τ, τ ′).

• If e
p,0
 e1 and e′

p
 e′1 then (e, e′) ∈ r>> ↔ (e1, e

′
1) ∈ r>>.

• If e
1
 e1 then for all e′ ∈ Tm (τ ′), if .((e1, e

′) ∈ r>>) then (e, e′) ∈ r>>.

A crucial property of the interpretation of types is that it respects substitution and weakening.

Lemma 2.4.3 (Substitution). Let ∆ ` τ and ∆, α ` σ. Then

J∆ ` σ[τ/α]K (ϕ) = J∆, α ` σK (ϕ [α 7→ J∆ ` τK (ϕ)]) .

Lemma 2.4.4 (Weakening). Suppose ∆ ` τ . Then for all ϕ ∈ VRel (∆), s ∈ VRel (σ, σ′), for
all α 6∈ ∆,

J∆ ` τK (ϕ) = J∆, α ` τK (ϕ [α 7→ (σ, σ′, s)]) .

The actual “logical relation” is defined on open terms by reducing it to the above relations
on closed terms by substitution. We first extend the interpretation of types to the interpretation
of contexts as

J∆ ` ΓK (ϕ) =
{

(γ, γ′)
∣∣∣ γ, γ′ : Valdom(Γ),∀x ∈ dom (Γ) , (γ(x), γ′(x)) ∈ J∆ ` Γ(x)K (ϕ)

}
Definition 2.4.5 (Logical relation).

∆; Γ ` e .log
⇓ e′ : τ = ∀ϕ ∈ VRel (∆) ,∀(γ, γ′) ∈ J∆ ` ΓK (ϕ), (eγ, e′γ′) ∈ J∆ ` τK (ϕ)

>>

2.4.1 Properties of relations

Definition 2.4.6 (Type-indexed relation). A type-indexed relation R is a set of tuples (∆,Γ, e, e′, τ)
such that ∆ ` Γ and ∆ ` τ and ∆ | Γ ` e : τ and ∆ | Γ ` e′ : τ . We write ∆; Γ ` e R e′ : τ for
(∆,Γ, e, e′, τ) ∈ R.

Definition 2.4.7 (Precongruence). A type-indexed relation R is reflexive if ∆; Γ ` e : τ implies
∆; Γ ` e R e : τ . It is transitive if ∆; Γ ` e R e′ : τ and ∆; Γ ` e′ R e′′ : τ implies
∆; Γ ` e R e′′ : τ . It is compatible if it is closed under the rules in Figure 5.

A precongruence is a reflexive, transitive and compatible type-indexed relation.
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∆; Γ ` x R x : τ
x:τ ∈ Γ

∆; Γ ` 〈〉 R 〈〉 : 1

∆; Γ ` e1 R e′1 : τ1 ∆; Γ ` e2 R e′2 : τ2

∆; Γ ` 〈e1, e2〉 R 〈e′1, e′2〉 : τ1 × τ2
∆; Γ, x:τ1 ` e R e′ : τ2

∆; Γ ` λx.e R λx.e′ : τ1 → τ2

∆; Γ ` e R e′ : τ1

∆; Γ ` inl e R inl e′ : τ1 + τ2

∆; Γ ` e R e′ : τ2

∆; Γ ` inr e R inr e′ : τ1 + τ2

∆; Γ, x1:τ1 ` e1 R e′1 : τ ∆; Γ, x2:τ2 ` e2 R e′2 : τ ∆; Γ ` e e′: τ1 + τ2

∆ Γ ` case (e, x1.e1, x2.e2) R case (e′, x1.e
′
1, x2.e

′
2) : τ

∆, α; Γ ` e R e′ : τ

∆; Γ ` Λ.e R Λ.e′ : ∀α.τ
∆ ` τ1 ∆; Γ ` e R e′ : τ [τ1/α]

∆; Γ ` (pack e) R (pack e′) : ∃α.τ

∆; Γ ` e1 R e′1 : ∃α.τ1 ∆ ` τ ∆, α; Γ, x : τ1 ` e R e′ : τ

∆; Γ ` (unpack e1 as x in e) R (unpack e′1 as x in e′) : τ

∆; Γ ` e R e′ : τ1 × τ2
∆; Γ ` proji e R proji e

′ : τi

∆; Γ ` e1 R e′1 : τ ′ → τ ∆; Γ ` e2 R e′2 : τ ′

∆; Γ ` e1 e2 R e′1 e
′
2 : τ

∆; Γ ` e R e′ : µα.τ

∆; Γ ` unfold e R unfold e′ : τ [µα.τ/α]

∆; Γ ` e R e′ : τ [µα.τ/α]

∆; Γ ` fold e R fold e′ : µα.τ

∆; Γ ` e R e′ : ∀α.τ
∆; Γ ` e[] R e′[] : τ [τ ′/α]

ftv(τ ′) ⊆ ∆
∆; Γ ` ? R ? : nat

Figure 5: Compatibility properties of type-indexed relations

2.4.2 The fundamental property

To prove the fundamental property (reflexivity) we start with some simple properties relating
evaluation contexts and relations. The proof of the compatibility properties in most of the cases
will be a simple consequence of these lemmata.

The following is a direct consequence of the fact that p → .p for any p : Ω, we only state it
here for reference.

Lemma 2.4.8. The interpretations of types satisfy the following monotonicity properties.

• If (v, v′) ∈ J∆ ` τK (ϕ) then . ((v, v′) ∈ J∆ ` τK (ϕ)).

• If (e, e′) ∈ J∆ ` τK (ϕ)
>>

then .
(

(e, e′) ∈ J∆ ` τK (ϕ)
>>
)

.

• If (E,E′) ∈ J∆ ` τK (ϕ)
>

then .
(

(E,E′) ∈ J∆ ` τK (ϕ)
>
)

.

Lemma 2.4.9. If (v, v′) ∈ J∆ ` τ1 → τ2K (ϕ) and (E,E′) ∈ J∆ ` τ2K (ϕ)
>

then (E ◦ (v []), E′ ◦ (v′ [])) ∈
J∆ ` τ1K (ϕ)

>
.
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This follows directly from the definition of the interpretation of types, Lemma 2.2.1 and
Lemma 2.1.1.

Corollary 2.4.10. If (e, e′) ∈ J∆ ` τ1K (ϕ)
>>

and (E,E′) ∈ J∆ ` τ2K (ϕ)
>

then

(E ◦ ([] e), E′ ◦ ([] e′)) ∈ J∆ ` τ1 → τ2K (ϕ)
>
.

Proof. Take (v, v′) ∈ J∆ ` τ1 → τ2K (ϕ). By Lemma 2.4.9 (E ◦ (v []), E′ ◦ (v′ []) ∈ J∆ ` τ1K (ϕ)
>

so using Lemma 2.1.1 we have

E′[v′ e′]↑ → E[v e] 7→

concluding the proof.

Corollary 2.4.11. If (e, e′) ∈ J∆ ` τ1 → τ2K (ϕ)
>>

and (E,E′) ∈ J∆ ` τ2K (ϕ)
>

then (E ◦ ((λx.e x) []) , E′ ◦ ((λx.e′ x) [])) ∈
J∆ ` τ1K (ϕ)

>
.

Proof. If (e, e′) ∈ J∆ ` τ1 → τ2K (ϕ)
>>

then (λx.e, λx.e′) ∈ J∆ ` τ1 → τ2K (ϕ). Then use Lemma 2.4.9.

Lemma 2.4.12. If (E,E′) ∈ J∆ ` τ [µα.τ/α]K (ϕ)
>

then

(E ◦ (unfold []), E′ ◦ (unfold [])) ∈ J∆ ` µα.τK (ϕ)
>
.

Proof. Take (fold v, fold v′) ∈ J∆ ` µα.τK (ϕ) with . ((v, v′) ∈ J∆ ` τ [µα.τ/α]K (ϕ)). Using
Lemma 2.1.1, Lemma 2.4.1 and Lemma 2.4.2 we have

E′[unfold (fold v′)]↑ ↔ E′[v′]↑ → .(E′[v′])→ .(E[v] 7→)→ E[unfold (fold v)] 7→.

concluding the proof.

Lemma 2.4.13. If (E,E′) ∈ J∆ ` µα.τK (ϕ)
>

then

(E ◦ (fold []), E′ ◦ (fold [])) ∈ J∆ ` τ [µα.τ/α]K (ϕ)
>
.

Proof. Easily follows from the fact that if (v, v′) are related at the unfolded type then (fold v, fold v′)
are related at the folded type.

Lemma 2.4.14. If (E,E′) ∈ J∆ ` ∃α.τK (ϕ)
>

then for all ∆ ` τ1

(E ◦ (pack []), E′ ◦ (pack [])) ∈ J∆ ` τ [τ1/α]K (ϕ)
>
.

Proof. Take (v, v′) ∈ J∆ ` τ [τ1/α]K (ϕ). Lemma 2.4.3 implies (v, v′) ∈ J∆, α ` τK (ϕ [α 7→ J∆ ` τK (ϕ)])
which further means that (pack v, pack v′) ∈ J∆ ` ∃α.τK (ϕ) which is easily seen to imply the
conclusion.

Lemma 2.4.15. Let ∆ ` τ , (E,E′) ∈ J∆ ` τK (ϕ)
>

. If for all σ, σ′ ∈ Type and s ∈ VRel (σ, σ′)
and for all (v, v′) ∈ J∆, α ` τ1K (ϕ [α 7→ s]),

(e[v/x], e′[v′/x]) ∈ J∆ ` τK (ϕ)
>>

then
(E ◦ (unpack [] as x in e), E′ ◦ (unpack [] as x in e′)) ∈ J∆ ` ∃α.τ1K (ϕ)

>
.
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Proof. Take (pack v, pack v′) ∈ J∆ ` ∃α.τ1K (ϕ). This implies there exist σ, σ′ ∈ Type and
an s ∈ VRel (σ, σ), such that (v, v′) ∈ J∆, α ` τ1K (ϕ [α 7→ s]). An assumption of this lemma

further implies (e[v/x], e′[v′/x]) ∈ J∆ ` τK (ϕ)
>>

. It is now easy to conclude the proof using
Lemma 2.4.2.

The other lemmata concerning context composition are proved in an analogous way. The
next lemma will be used to prove compatibility of ?.

Lemma 2.4.16. For all n ∈ N, (n, n) ∈ J` natK.

Proof. By induction on n.

n = 0 Then n = fold inl 〈〉. It is easy to see that (inl 〈〉, inl 〈〉) ∈ J` 1 + natK and so the result
follows by the definition of interpretation of recursive types and Lemma 2.4.8.

n = m+ 1 Then n = fold inrm. By assumption (m,m) ∈ J` natK and so (inrm, inrm) ∈
J` 1 + natK and the result easily follows follows by the definition of interpretation of recur-
sive types and Lemma 2.4.8.

We are now ready to prove that the logical approximation relation is compatible.

Proposition 2.4.17. The relation .log
⇓ is closed under all the rules in Figure 5, i.e. it is

compatible.

Proof. We only show some cases. The general rule is that compatibility rules are proved either
by directly showing two values are related at the value relation or relying on the above lemmata
and extending the evaluation contexts.

• Introduction of recursive types.

∆; Γ ` e .log
⇓ e′ : τ [µα.τ/α]

∆; Γ ` fold e .log
⇓ fold e′ : µα.τ

Take ϕ ∈ VRel (∆) and (γ, γ′) ∈ J∆ ` ΓK (ϕ). Let f = eγ and f ′ = e′γ′. We have

to show (fold f, fold f ′) ∈ J∆ ` µα.τKϕ>>. So take (E,E′) ∈ J∆ ` µα.τKϕ>. By as-

sumption (f, f ′) ∈ J∆ ` τ [µα.τ/α]Kϕ>> so it suffices to show (E ◦ (fold []), E′ ◦ fold []) ∈
J∆ ` τ [µα.τ/α]Kϕ>, but this is exactly the content of Lemma 2.4.13.

• Elimination of recursive types.

∆; Γ ` e .log
⇓ e′ : µα.τ

∆; Γ ` unfold e .log
⇓ unfold e′ : τ [µα.τ/α]

Exactly the same reasoning as in the previous case, only this time we use Lemma 2.4.12 in
place of Lemma 2.4.13.

• The ? expression.

∆; Γ ` ? .log
⇓ ? : nat

By Lemma 2.4.16 we have ∀n, (n, n) ∈ J` natK.
Take (E,E′) ∈ J` natK> and assume E′[?]↑. By definition of the ↑ relation there exists an
e′, ?  e′ and E[e′]↑. Inspecting the operational semantics we see that e′ = n for some
n ∈ N. This implies E[n] 7→ which further implies by Lemma 2.2.1 that E[?] 7→.
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• Introduction of existential type.

∆ ` τ1 ∆; Γ ` e .log
⇓ e′ : τ [τ1/α]

∆; Γ ` pack e .log
⇓ pack e′ : ∃α.τ

Take ϕ ∈ VRel (∆) and (γ, γ′) ∈ J∆ ` ΓK (ϕ). Let f = eγ and f ′ = e′γ′. We need to show

(pack f, pack f ′) ∈ J∆ ` ∃α.τK (ϕ)
>>

Again by assumption (f, f ′) ∈ J∆ ` τ [τ1/α]K (ϕ)
>>

. We use Lemma 2.4.14 to finish the
proof, as we did above for the case of introduction of recursive types.

• Elimination of existential types.

∆; Γ ` e .log
⇓ e′ : ∃α.τ1 ∆ ` τ ∆, α; Γ, x : τ1 ` e1 .

log
⇓ e′1 : τ

∆; Γ ` (unpack e as x in e1) .log
⇓ (unpack e′ as x in e′1) : τ

Take ϕ ∈ VRel (∆) and (γ, γ′) ∈ J∆ ` ΓK (ϕ). Let f = eγ and f ′ = e′γ′, f1 = e1γ,
f ′1 = e′1γ. We need to show

(unpack f as x in f1, unpack f
′ as x in f ′1) ∈ J∆ ` τK (ϕ)

>>
.

The premise of this case shows that for all σ, σ′ ∈ Type and s ∈ VRel (σ, σ′), for all
(v, v′) ∈ J∆, α ` τ1K (ϕ [α 7→ s]), we have

(f1[v/x], f ′1[v′/x]) ∈ J∆, α ` τK (ϕ [α 7→ s])
>>

and by Lemma 2.4.4 this is the same as for all σ, σ′ ∈ Type, for all s ∈ VRel (σ, σ′), for
all (v, v′) ∈ J∆, α ` τ1K (ϕ [α 7→ s]),

(f1[v/x], f ′1[v′/x]) ∈ J∆ ` τK (ϕ)
>>
.

We now use Lemma 2.4.15 to conclude the proof.

Corollary 2.4.18 (Fundamental theorem of logical relations). If ∆; Γ ` e : τ then ∆; Γ ` e .log
⇓

e : τ

Proof. Every compatible relation is reflexive. This can be shown by an easy induction on the
typing derivation. Proposition 2.4.17 shows that the logical relation is compatible, hence it is
reflexive.

We need the next corollary to relate the logical approximation relation to must-contextual
approximation.

Corollary 2.4.19. For any expressions e, e′ and context C, if ∆ | Γ ` e .log
⇓ e′ : τ and

C : (∆ | ΓV τ)→ (∆′ | Γ′ V σ) then ∆′ | Γ′ ` C[e] .log
⇓ C[e′] : τ ′.

Proof. By induction on the judgment C : (∆ | ΓV τ)→ (∆′ | Γ′ V σ), using Proposition 2.4.17.
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2.4.3 All three approximation relations coincide

We have already mentioned that it is easy to see that must-contextual approximation implies
must-CIU approximation. We now show that must-CIU approximation implies logical approxi-
mation.

We start with a lemma showing that the logical approximation relation is closed under post-
composition with the must-CIU approximation relation.

Lemma 2.4.20. For any terms e, e′ and e′′ of type τ in context ∆ | Γ. If ∆ | Γ ` e .log
⇓ e′ :

and ∆ | Γ ` e′ .CIU
⇓ e′′ : τ then ∆ | Γ ` e .log

⇓ e′′ :.

Proof. Take ϕ ∈ VRel (∆) and (γ, γ′) ∈ J∆ ` ΓK (ϕ). Take (E,E′) ∈ JτK (ϕ)
>

and assume

E′[e′′γ′]↑. Since ∆ | Γ ` e′ .CIU
⇓ e′′ : τ we have E′[e′γ′]↑ and since ∆ | Γ ` e .log

⇓ e′ : we further
have E[eγ] 7→, concluding the proof.

Corollary 2.4.21. For any terms e and e′ of type τ in context ∆ | Γ. If ∆ | Γ ` e .CIU
⇓ e′ : τ

then ∆ | Γ ` e .log
⇓ e′ :.

Proof. By Corollary 2.4.18 we have that ∆ | Γ ` e .log
⇓ e :. The previous lemma concludes the

proof.

The only missing link in the chain of inclusions is the implication from the logical relation to
contextual approximation. This, however, requires some more work.

Adequacy

2.5 Adequacy

We wish to show soundness of the logical relation with respect to must-contextual approximation.
However, the implication

∆ | Γ ` e .log
⇓ e′ : τ → ∆ | Γ ` e .ctx

⇓ e′ : τ

does not hold internally, due to the different divergence relations used in the definition of
the logical relation. To see precisely where the proof fails let us attempt it. Let ∆ | Γ `
e .log

⇓ e′ : τ and take a well-typed closing context C with result type σ. Then by Corol-

lary 2.4.19, ∅ | ∅ ` C[e] .log
⇓ C[e′] : σ. Unfolding the definition of the logical relation we get

(C[e], C[e′]) ∈ J∅ ` σK>>. It is easy to see that (−,−) ∈ J∅ ` σK> and so we get by defini-
tion of >> that C[e′]↑ → C[e] 7→. However the definition of contextual equivalence requires the
implication C[e′]↑ → C[e]↑, which is not a consequence of the previous one.

Intuitively, the gist of the problem is that ↑ defines a time-independent predicate, whereas 7→

depends on the time, as explained in the introduction. However, in the model in we can show
the following rule is admissible.

Lemma 2.5.1. e : Tm | ∅ ` �(e 7→)→ e↑ holds in the logic.

Thus we additionally assume this principle in our logic. Using this, we are led to the following
corrected statement of adequacy using the � modality.

Theorem 2.5.2 (Adequacy). If e and e′ are of type τ in context ∆ | Γ then �(∆ | Γ ` e .log
⇓

e′ : τ) implies ∆ | Γ ` e .ctx
⇓ e′ : τ .
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To prove this theorem we first observe that all the lemmata used in the proof of Corol-
lary 2.4.19 are proved in constant contexts using only other constant facts and so Corollary 2.4.19
can be strengthened. More precisely, we can prove the following restatement.

Proposition 2.5.3. �[∀∆,∆′,Γ,Γ′, τ, σ, C, e, e′, C : (∆ | ΓV τ)→ (∆′ | Γ′ V σ)

→ ∆ | Γ ` e .log
⇓ e′ : τ → ∆′ | Γ′ ` C[e] .log

⇓ C[e′] : τ ′].

Note that all the explicit universal quantification in the proposition is over constant types.
One additional ingredient we need to complete the proof is the fact that ↑ is ¬¬-closed, i.e.
e↑ ↔ ¬¬(e↑). We can show this in the logic using the fact that ↑ is the greatest post-fixed point
by showing that ¬¬↑ is another one. This fact further means that �(e↑) ↔ (e↑). We are now
ready to proceed with the proof of Theorem 2.5.2.

Theorem 2.5.2. Continuing the proof we started above we get, using Proposition 1.3.5, that
�(C[e′]↑ → C[e] 7→) and thus also �(C[e′]↑)→ �(C[e] 7→). �(C[e′]↑)↔ C[e′]↑ and by Lemma 2.5.1
�(C[e] 7→)↔ C[e]↑. We thus conclude C[e′]↑ → C[e]↑, as required.

Using Proposition 1.8.3 and Proposition 1.8.2 we can see that for each ∆, Γ, e, e′ and τ ,

∆ | Γ ` e .ctx
⇓ e′ : τ ↔ ¬¬(∆ | Γ ` e .ctx

⇓ e′ : τ)

and similarly
∆ | Γ ` e .CIU

⇓ e′ : τ ↔ ¬¬(∆ | Γ ` e .CIU
⇓ e′ : τ).

Combining this observation with the above we have

Theorem 2.5.4. For any ∆, Γ, e, e′ and τ ,

∆ | Γ ` e .CIU
⇓ e′ : τ ↔ ∆ | Γ ` e .ctx

⇓ e′ : τ ↔ �(∆ | Γ ` e .log
⇓ e′ : τ)

Proof. The only missing link is the implication from CIU approximation to “boxed” logical
approximation. However using the previous observation that CIU approximation is ¬¬-closed
with Corollary 2.4.21 and the fact that ¬¬ is the left adjoint to �, we get the desired implication.

2.6 Examples of the use of logical relation

We show the syntactic minimal invariance example. We start with two simple lemmata.

Lemma 2.6.1. Let τ, σ ∈ Type, let e ∈ Tm (τ → σ), v ∈ Val (τ → σ). Then

(e, v) ∈ Jτ → σK>> → (λx.e x, v) ∈ Jτ → σK .

Proof. By assumption v = λx.e′ for some x and e′. Take (u, u′) ∈ JτK and we’re supposed to

show (e u, e′[u′/x]) ∈ JσK>>. By Lemma 2.4.2 it suffices to show (e u, v u′) ∈ JσK>> and this is a
simple consequence of Corollary 2.4.10.

Lemma 2.6.2. Let τ, σ ∈ Type, let e ∈ Tm (τ → σ), v ∈ Val (τ → σ). Then

(v, e) ∈ Jτ → σK>> → (v, λx.e x) ∈ Jτ → σK .
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2.6.1 Syntactic minimal invariance

Let fix : ∀α, β.((α→β)→(α→β)) → (α→β) be the term Λ.Λ.λf.δf (fold δf ) where δf is the
term λy.let y′ = unfold y in f (λx.y′ y x).

Consider the type τ = µα.nat + α→ α. Let id = λx.x and consider the term

f ≡ λh, x.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y)))) .

We show that fix[][] f ∼=⇓ id : τ → τ . First we show that they either logically approximates
the other and then use the fact that we have proved this in the context of only constant facts
to conclude that the statement always holds. Thus we use Theorem 2.5.4 to conclude that the
terms are contextually equivalent.

⇒ We first show by Löb induction that (fix[][] f, id) ∈ Jτ → τK>>. It is easy to see that

fix[][] f
p,1
 λx.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y)))) .

where h = λx.δf (fold δf )x. Let

ϕ = λx.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y)))) .

We now show directly that (ϕ, id) ∈ Jτ → τK which suffices by Lemma 2.4.8 and Lemma 2.4.2.

So take (u, u′) ∈ JτK. By the definition of the interpretation of recursive types there are
two cases

• u = fold (inln) and u′ = fold (inln) for some n ∈ N. This case is immediate.

• u = fold (inr g), u′ = fold (inr g′) and .((g, g′) ∈ Jτ → τK). We then have that

ϕu
p,1
 fold (inrλy.h(g(h y))) and idu′

p
 u′ and so it suffices to show

. (λy. (h(g(h y)), g′) ∈ Jτ → τK) .

We again show that these are related as values so take .((v, v′) ∈ JτK) and we need to

show .
(

(h(g(h v)), g′ v′) ∈ JτK>>
)

. Take .((E,E′) ∈ JτK>). Löb induction hypothesis

gives us that .((h′, id) ∈ Jτ → τK>>), where h′ is the body of h, i.e h = λx.h′ x. By

Lemma 2.6.1 .((h, id) ∈ Jτ → τK>>) and so by using Lemma 2.4.9 three times we get

.
(

(E[h (g (h []))], E′[g′ []]) ∈ JτK>
)

.

So assuming .(E′[g′ v′]↑) we get .(E[h (g (h v))] 7→), concluding the proof.

⇐ This direction is essentially the same, only using Lemma 2.6.2 in place of Lemma 2.6.1.

2.6.2 Least prefixed point

We now prove the following recursion induction principle for the fixed-point combinator. The
rule is the same as in [3] and the proof is morally the same, except that we replace induction on
ordinals by Löb induction, thus removing a lot of unnecessary bookkeeping. More precisely, we
prove

∆ | Γ ` v .ctx
⇓ v′ : τ1→ τ2

∆ | Γ ` fix[][] v .ctx
⇓ v′ : τ1→ τ2
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We do this in a few stages. For simplicity we only consider the case where ∆ and Γ are empty.
The general case is proved in the same way.

It is easy to see that fix[][] v
1
 v h where h = λx.δf (fold δf )x. We first show (h, v′) ∈

Jτ1 → τ2K by Löb induction. So assume .((h, v′) ∈ Jτ1 → τ2K). Since v′ is a value of the func-

tion type v′ = λy.e for some y and typeable e. Take (u, u′) ∈ Jτ1K and (E,E′) ∈ Jτ2K
>

. Then
using Corollary 2.4.10, then Corollary 2.4.18 applied to v and then Corollary 2.4.11 for v we
have (E[((λx.v x) −)u], E[((λx.v x) −)u]) ∈ Jτ1 → τ2K

>
. Using the assumption that v v′ ap-

proximates v′ and Theorem 2.5.4 we get

E′[v′ u′]↑ →E′[(v v′)u′]↑

and thus

. (E′[(v v′)u′]↑)

and now using the induction hypothesis .((h, v′) ∈ Jτ1 → τ2K) and the fact that (E[((λx.v x) −)u], E[((λx.v x) −)u]) ∈
Jτ1 → τ2K

>
we get

. (E[(v h)u] 7→)

and since hu
1
 (v h)u we can use Lemma 2.2.1 to get

E[hu] 7→

concluding the proof.

Since the proof relies only on constant facts we have, using Theorem 2.5.4, that h contextually
approximates v′. Thus

fix[][] v .ctx
⇓ v h .ctx

⇓ v v′ .ctx
⇓ v′

2.6.3 Parametricity

We now characterize the values of type ∀α.α × α → α. We start by proving some expected
properties of values of the polymorphic and function types.

Lemma 2.6.3. Let α ` τ and v ∈ Val (∀α.τ). Then for all types σ, σ′ and s ∈ VRel (σ, σ′),

(v[], v[]) ∈ Jα ` τK (ϕ)
>>

where ϕ maps α to (σ, σ′, s).

Let Ω = ∀α.fix[](λf.f)〈〉 be the term of type ∀α.α that deterministically diverges when
instantiated (applied).

Lemma 2.6.4. Let v ∈ Val (∀α.α× α→ α). If v[] may-diverges then ∅ | ∅ ` v =ctx
⇓ ∀α.Ω[] :

∀α.α× α→ α.

Proof. This is a simple consequence of Lemma 2.6.10.

Lemma 2.6.5. Let v ∈ Val (∀α.α× α→ α). If v[] does not may-diverge and there exist a type
τ and a value u ∈ Val (τ × τ) such that v[]u may-diverges then for all types σ and for all values
w ∈ Val (σ × σ), v[]w may-diverges and ∅ | ∅ ` v[]w =ctx

⇓ Ω[] : σ.
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Proof. It is obvious that Ω[] approximates v[]w for any w. For the other approximation we use
Theorem 2.5.4.

By the canonical forms lemma u = 〈u1, u2〉 for some u1, u2 ∈ Val (τ). Let w ∈ Val (σ × σ).
Again by the canonical forms lemma w = 〈w1, w2〉 for some w1, w2 ∈ Val (σ). Now let s =
{(w1, u1), (w2, u2)} ∈ VRel (σ, τ). It is obvious that (w, u) ∈ s. Using Lemma 2.6.3 and the

compatibility lemma for the application we have (v[]w, v[]u) ∈ Jα ` αK (s)
>>

.2 Since the empty
context is always related to itself and v[]u↑ we have that v[]w 7→. Since Lemma 2.6.3 is easily
strengthened to a boxed one we thus have v[]w↑ using Lemma 2.5.1.

We have thus established that v[]w↑ for arbitrary w which implies that it CIU-approximates
any other term and thus using Theorem 2.5.4 we conclude the proof.

For the rest of the cases we need some properties of the ↑ relation which we now prove.

Lemma 2.6.6. Let e ∈ Tm (τ). If ¬(e↑) then there exists a vVal (τ), such that e ∗ v.

Proof. We first prove by coinduction that the set

N =
{
e′ ∈ Val (τ)

∣∣ ∀v ∈ Val (τ) ,¬(e′  ∗ v)
}

is included in ↑ using the universal property of ↑, i.e. that it is the greatest post-fixed point.
Given e′ ∈ N we have to show there exists e′′ such that e′  e′′ and e′′ ∈ N . By the progress

lemma e′ is either a value or there exists an expression e′′ that e′ reduces to. Since e′ ∈ N it
cannot be a value. Thus there exists an expression e′′ such that e′  e′′. We have to show
e′′ ∈ N . Suppose v ∈ Val (τ) and e′′  ∗ v. Then e′  ∗ v. A contradiction.

Thus N ⊆ ↑ and thus ¬↑ ⊆ ¬N . But e ∈ N ↔ ∀v ∈ Val (τ) ,¬(e′  ∗ v) ↔ ¬(∃v ∈
Val (τ) , e  ∗ v) and since we can show using properties of ¬¬ that ∃v ∈ Val (τ) , e  ∗ v is
¬¬-closed we have proved the lemma.

In the rest of this section we define 2 = 1 + 1 to be the type of booleans. We then write
true = inl 〈〉 and false = inr 〈〉. By the canonical forms lemma these are the only two closed
values of this type.

Lemma 2.6.7. Let E ∈ Stk (2) and e ∈ Tm (2). Suppose E[false]↑ but ¬(E[true]↑). If
¬(e ∗ false) and E[e]↑ then e↑.

Proof. We prove this by coinduction. Let

N =
{
e ∈ Tm (2)

∣∣ ¬(e ∗ false) ∧ E[e]↑
}

and we wish to show that N ⊆ ↑. Suppose e ∈ N . We need to exhibit an e′, such that e e′ and
e′ ∈ N . By the progress lemma we e is either a value or steps to some e′. First we observe that
e cannot be a value since the only two values are true and false. If e = false then e  ∗ false
and if e = true then E[e]↑ does not hold by assumption on E.

So e is not a value. By assumption E[e]↑ and so there exists e′′, such that E[e] e′′ and e′′↑.
Since e is not a value we have e′′ = E[e′] for some e′ such that e  e′. For the first condition,
suppose e′  ∗ false. Then clearly e ∗ false, a contradiction.

We have thus exhibited an e′, such that e e′ and e′ ∈ N , thus concluding the proof.

Naturally we can exchange the roles of true and false in the last lemma. We record the next
lemma for reference. The proof is by simple coinduction.

Lemma 2.6.8. If e′↑ and e ∗ e′ then e↑.
2We abused the notation by writing s instead of a function that maps ϕ to (σ, τ, s), but the meaning is clear.
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We now prove the converse of Lemma 2.5.1 for well-typed expressions.

Lemma 2.6.9. Let τ ∈ Type and e ∈ Tm (τ). Then e↑ → �(e 7→).

Proof. Using the fundamental theorem and the fact that �((−,−) ∈ J∅ ` τK>) holds we have
that �(e↑ → e 7→) which implies the lemma since � distributes over implication in the correct
direction.

Note that we cannot directly use Löb induction to prove that e↑ → e 7→ since we use two
different step relations in the definitions of ↑ and 7→.

We record the functional extensionality property for values of the function type. The proof
is the same as in [3] so we omit it.

Lemma 2.6.10. Let τ, σ ∈ Type, f, g ∈ Val (() τ → σ) and assume ∀u ∈ Val (τ) , ∅ | ∅ `
f u =ctx

⇓ g u : σ. Then ∅ | ∅ ` f =ctx
⇓ g : τ → σ.

We now have all the ingredients to prove the last case in the characterization of the values
of type ∀α.α× α→ α.

Lemma 2.6.11. Let v ∈ Val (∀α.α× α→ α). Suppose that for all τ and for all u ∈ Val (τ × τ),
¬(v[]u↑). Then one of the following three cases holds.

1. ∀τ ∈ Type,∀x, y ∈ Val (τ) , ∅ | ∅ ` v[]〈x, y〉 =ctx
⇓ y : τ

2. ∀τ ∈ Type,∀x, y ∈ Val (τ) , ∅ | ∅ ` v[]〈x, y〉 =ctx
⇓ y : τ

3. ∀τ ∈ Type,∀x, y ∈ Val (τ) , ∅ | ∅ ` v[]〈x, y〉 =ctx
⇓ x or y : τ

where x or y is the binary choice expression case (unfold ?, .x, .y).

Proof. By Lemma 2.6.3 and the compatibility for application we have that for any τ ∈ Type,

∀r ∈ VRel (2, τ) ,∀(b, w) ∈ r × r, (v[] b, v[]w) ∈ r>> (6)

and

∀s ∈ VRel (τ,2) ,∀(w, b) ∈ s× s, (v[]w, v[] b) ∈ s>> (7)

where we write r × r and s× s for the construction on value relations used to interpret product
types.

We consider 4 cases. In all cases let x, y ∈ Val (τ) and let s = {(x, true), (y, false)} ∈
VRel (τ,2) and r = {(true, x), (false, y)} ∈ VRel (2, τ).

• Suppose v[]〈true, false〉  ∗ true and v[]〈true, false〉  ∗ false. We will show that in
this case ∀τ ∈ Type,∀x, y ∈ Val (τ) , ∅ | ∅ ` v[]〈x, y〉 =ctx

⇓ x or y : τ and we do this by
establishing CIU-equivalence. We prove two approximations.

– Take a well-typed evaluation context E and assume E[x or y]↑. We need to show that
E[v[]〈x, y〉]↑. E[x or y]↑ implies that at least one of E[x]↑, E[y]↑ holds. Without loss
of generality suppose that E[x]↑. Lemma 2.6.9 implies that (E, (λx.if z then Ω[] else z) −) ∈
JsK>. Using Lemma 2.6.8 and the assumption that v[]〈true, false〉  ∗ true we have
that (λx.if z then Ω[] else z) (v[]〈true, false〉)↑. Hence we have from (7) that
E[v[]〈x, y〉] 7→ which we can improve to E[v[]〈x, y〉]↑ using Lemma 2.5.1 and the fact
that we only used constant properties to prove it (in particular, s and r are ¬¬-closed
relations).

35



– Take a well-typed evaluation context E and assume that E[v[]〈x, y〉]↑. We need to
show E[x or y]↑ and using Lemma 2.6.8 it suffices to show that either E[x]↑ or E[y]↑.
Assume for the sake of contratiction that the negation holds. Since in intuitionistic
logic ¬(P ∨Q)↔ ¬P ∧¬Q holds we have that neither of E[x] and E[y] may-diverges.
This together with the assumption that E[v[]〈x, y〉]↑means that (−, E) ∈ r>. However
this implies, using (6) and Lemma 2.5.1 that v[]〈true, false〉↑, contradicting the as-
sumption of the lemma. Thus we have proved ¬¬E[x or y]↑ and since may-divergence
is ¬¬-closed also E[x or y]↑.

• Suppose v[]〈true, false〉 ∗ true and not v[]〈true, false〉 ∗ false. We will show that in
this case ∀τ ∈ Type,∀x, y ∈ Val (τ) , ∅ | ∅ ` v[]〈x, y〉 =ctx

⇓ x : τ and we again do this by
establishing CIU-equivalence using two approximations.

– Take a well-typed evaluation context E and assume that E[x]↑. We are to show
E[v[]〈x, y〉]↑. E[x]↑ implies, using Lemma 2.6.9, that (E, (λz.if z then Ω[] else z) −) ∈
s>. Using (7) and Lemma 2.6.8 we thus have that E[v[]〈x, y〉]↑. Note that in this
direction we have not used the assumption that v[]〈true, false〉 does not evaluate to
false. We shall need it in the other direction, however.

– Take a well-typed evaluation context E and assume that E[v[]〈x, y〉]↑. We are to
show E[x]↑. Assume the converse for the sake of contradiction. This then means
that ((λz.if z then z else Ω[]) −, E) ∈ r>. Using this and (6) we have that
(λz.if z then z else Ω[]) v[]〈true, false〉↑. We now use Lemma 2.6.7 to conclude
that v[]〈true, false〉↑ (note that here is the place where we used the assumption that
v[]〈true, false〉 does not reduce to false). However this contradicts the assumption
that v[]〈true, false〉 does not may-diverge. We have thus established ¬¬(E[x]↑) and
so E[x]↑.

• Suppose v[]〈true, false〉  ∗ false and not v[]〈true, false〉  ∗ true. In this case ∀τ ∈
Type,∀x, y ∈ Val (τ) , ∅ | ∅ ` v[]〈x, y〉 =ctx

⇓ y : τ . The proof is completely analogous to the
previous case so we omit the details.

• Suppose v[]〈true, false〉 evaluates to neither true nor false. We claim that this case is
impossible. Indeed, by assumption v[]〈true, false〉 does not may-diverge. By Lemma 2.6.6
there is a value z ∈ Val (2) such that v[]〈true, false〉  ∗ z. However by the canonical
forms lemma we z must be either true or false. A contradiction.

We claim that the four cases we have considered cover everything. As a consequence of
Lemma 1.9.1 we have for any two expressions e and e′, that either e  ∗ e′ or ¬(e  ∗ e′). In
particular we have v[]〈true, false〉  ∗ false or not and v[]〈true, false〉  ∗ true or not, which
give exactly the four cases we have considered.

3 View from the outside

We now sketch the interpretation of the types and relations defined in the internal language of
Sh (ω1) in the category Set.

3.1 Interpretation of the model

Types The set of terms, types and evaluation contexts can be constructed as initial algebras
of polynomial functors, hence are preserved by ∆, so Val = ∆ (Val), Tm = ∆ (Tm) and
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∆ (Stk) (here Tm, Stk and Val are sets of expressions, evaluation contexts and values defined
in Set). Moreover, since the initial algebra structure is preserved, in particular catamorphisms
are preserved. Thus, functions from constant sets to constant sets “defined by induction” on,
say Stk are the ones coming from Set.

Predicates The basic evaluation relation 7−→ can be defined by a simple case analysis on the
set of closed expressions. More precisely it can be defined in the geometric fragment of first-
order logic as a predicate on constant sets, since the type of closed terms is constant and ∆
preserves products. Thus if 7−→ is the basic one-step relation defined in Set, then 7−→= ∆ (7−→).
The one-step reduction relation  can be defined using 7−→ using a function from evaluation
contexts and closed expressions to closed expressions, which “plugs the hole”. This function can
be defined by induction on the structure of the evaluation context, technically as a function from
Stk to TmTm and since ∆ also preserves exponentials, TmTm is constant. Thus this function
arises from the analogous function in Set.

Thus  is a constant predicate. The transitive closure  , the relation  ∗ can also be seen

to be constant. Similarly, the relations
1
 ,

p
 ..., can be defined positively by starting with a

smaller 7−→ relation and by relational composition. It is easy to see that composing two constant
relations gives a constant relation. Thus, all the step relations are constant and equivalent to
the inclusion by ∆ of analogous relations defined in sets.

Interpretation of ↑ ↑ is defined internally as the greatest fixed point of Φ given as Φ(m) ={
e : Tm

∣∣ ∃e′, e e′ ∧m(e′)
}
. Thus it satisfies ∀e : Tm, e↑ ↔ ∃e′, e  e′ ∧ e′↑ and is the

largest predicate that satisfies this formula. We will now show that ↑ = ∆↑, where ↑ is the
may-divergence relation defined in Set. We use Kripke-Joyal forcing semantics.

Suppose ν is a successor ordinal. Let e ∈ Tm(ν). Thus e ∈ Tm and by Kripke-Joyal we
have

ν  e↑ iff ∃e′ ∈ Tm, ν  e e′ and ν  e′↑

As we described above, ν  e e′ if and only if e e′ this implies that at each successor ordinal3

ν, ↑(ν) is a fixed point of

Φ′(S) =
{
e : Tm

∣∣ ∃e′, e e′ ∧ e′ ∈ S
}

defined in Set. Since ↑ is defined as the greatest fixed point of Φ′ we have that for all successor

ordinals ν, ↑(ν) ⊆ ↑, thus ↑ ≤ ∆
(
↑
)
. It is easy to see (same sequence of steps we did just now)

that ∆
(
↑
)

is a fixed point of Φ. Hence, ↑ ≥ ∆
(
↑
)

and so ↑ = ∆
(
↑
)
.

It is easy to see that ↑ is exactly the complement of the must-termination predicate ⇓ defined
in [3].

Interpretation of the stratified may-divergence predicate The predicate 7→ is defined

internally as the unique fixed point of Ψ given as Ψ(m) =
{
e : Tm

∣∣ ∃e′, e 1
 e′ ∧m(e′)

}
.

For a successor ordinal ν we thus have that

ν  e 7→ iff ∃e
′ ∈ Tm, ν  e

1
 e′ and for all β < ν, β  e′ 7→

3To see the need for assuming that ν is a successor ordinal see the Kripke-Joyal semantics of existentials for
limit ordinals.
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Since for ν ≥ 1 ν  e
1
 e′ means that externally e

1
 e′ this is exactly the same as the

definition of 7→ given in Section 2.2.
Thus,

7→(ν) =
{
e ∈ Tm

∣∣ ∃e′ ∈ Tm, e
1
 e′ ∧ ∀β < ν, e′ ∈ 7→(β)

}
which is exactly the pointwise negation of the stratified must-termination predicate {⇓β}

defined in [3], i.e. ⇓cβ= 7→(β).

Proposition 3.1.1.
ω1⋂
ν=1

7→(β) ⊆ ↑

Proof. Since ⇓cβ= 7→(β) and ↑ =⇓c we have

ω1⋂
ν=1

7→(β) ⊆ ↑ ↔
ω1⋂
ν=1

⇓cβ⊆⇓c ↔

(
ω1⋃
ν=1

⇓β

)c
⊆⇓c ↔ ⇓⊆ (

ω1⋃
ν=1

⇓β)

and the last inclusion holds by [3, Lemma 5.2] (to be completely precise we cannot immediately
apply the same lemma, since we have a slightly different language, but the proof is exactly the
same).

Note that this last proposition would not hold, were we to interpret the construction in the
topos of trees S, since we would only take the intersection of the first ω approximations. Thus,
we need to work in the topos Sh (ω1).

As a consequence, we can add the following principle to our logic

e : Tm | ∅ ` �(e 7→)→ e↑
which enables us to prove adequacy of the logical relation with respect to contextual must-
approximation.

↑ is constant We can actually show in the logic that ↑ is ¬¬-closed. From this it follows that
�↑ = ↑. Indeed, ↑ is defined as the greatest fixed point of a monotone operation on a complete
lattice and we now show that ¬¬↑ is another fixed point. Hence ¬¬↑ ≤ ↑ but since ¬¬ is a
closure operation, we get ¬¬↑ = ↑.

To show that ¬¬↑ is a fixed point of Φ we have to show ¬¬(e↑)↔ ∃e′, e e′ ∧¬¬e′↑. Since
↑ is a fixed point of ϕ we have

¬¬(e↑)↔ ¬¬ (∃e′, e e′ ∧ e′↑)

and since we quantify over a constant, therefore total, type we can use Lemma 1.3.7 to get

↔ ∃e′,¬¬e e′ ∧ ¬¬(e′↑)

(we also used the fact that ¬¬ preserves conjunction) and since is constant, therefore ¬¬-closed
(this can be also shown in the logic if we write it out precisely) we get

↔ ∃e′, e e′ ∧ ¬¬(e′↑)
showing that ¬¬↑ is a fixed point of Φ and concluding the proof.

Note that another way to prove that ↑ = ∆
(
↑
)

is to use the fact that ¬¬↑ = ↑. One uses
the fact (which we have not stated or proved, but is easy to see) that ¬¬-closed predicates on
a constant set are constant, i.e. they are ∆(ϕ′) for some predicate ϕ′ on Tm. We then use the
fact that Π1 is a logical morphism to get that Π1(↑) is the greatest fixed point characterized by
the same formula in Set, thus, Π1(↑) = ↑ and hence (since ↑ is constant), ↑ = ∆

(
↑
)
.
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